
Source code

Individual.java

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/**
 * Created by yauheni on 07.09.16.
 */
class Individual implements Comparable<Individual> {
 public static final int GENE_LENGTH = 1000;
 private List<Integer> genes;
 private int fitnessValue;
 public int getGene(int index) {
 return genes.get(index);
 }
 public void setGene(int index, int gene) {
 genes.set(index, gene);
 }
 public Individual() {
 genes = new ArrayList<>();
 for (int i = 0; i < GENE_LENGTH; ++i) {
 genes.add(ThreadLocalRandom.current().nextInt(0, 2));
 }
 }
 public int getFitnessValue() {
 return fitnessValue;
 }
 public void setFitnessValue(int fitnessValue) {
 this.fitnessValue = fitnessValue;
 }
 public void generateIndividual() {
 }
 public int getFitness() {
 int temp = 0;
 for (int i = 0; i < genes.size(); i++) {
 if(genes.get(i) == 1) {
 temp++;
 }
 }
 fitnessValue = temp;
 return fitnessValue;
 }
 @Override
 public int compareTo(Individual o) {
 return (o.getFitness() > fitnessValue ? 1 : (o.getFitness() ==
fitnessValue) ? 0 : ­1);
 }
}

Population.java

import java.util.*;
class Population {
 public static final int POPULATION_SIZE = 100;
 private List<Individual> individuals;
 public Population(List<Individual> individuals) {
 this.individuals = individuals;
 }
 public Population() {
 }
 public static Population newPopulation() {
 Population pop = new Population();
 List<Individual> list = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 list.add(new Individual());
 }
 pop.setIndividuals(list);
 return pop;
 }
 public List<Individual> getIndividuals() {
 return individuals;
 }
 public void setIndividuals(List<Individual> individuals) {
 this.individuals = individuals;
 }
 public Individual getFittestIndividual() {
 try {
 Collections.sort(individuals);
 }catch(Exception e) {
 }
 return individuals.get(0);
 }
 public double averageFitness() {
 int temp = 0;
 for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 1000; j++) {
 if(individuals.get(i).getGene(j) == 1) {
 temp++;
 }
 }
 }
 return temp/100;
 }
 public double getMax() {
 int temp = 0;
 Individual best = getFittestIndividual();
 for (int i = 0; i < 1000; i++) {
 if(best.getGene(i) == 1){
 temp++;
 }
 }
 return temp;
 }
}

Main.java

public class Main {
 public static void main(String[] args) {
 Population pop = Population.newPopulation();
 List<Double> tempList = new ArrayList<>();
 int count=0;
 while(true) {
 if(pop.getMax() == pop.averageFitness())
 count++;
 if(count == 200)
 break;
 System.out.print(pop.getMax() + "\n");
 tempList.add(pop.averageFitness());
 Population newPopulation = new Population();
 List<Individual> newIndividuals = new ArrayList<>();
 List<Individual> individuals = pop.getIndividuals();
 for (int i = 0; i < 50; i++) {
 int first = ThreadLocalRandom.current().nextInt(0, 50);
 int second = ThreadLocalRandom.current().nextInt(0, 50);
 int razrez = ThreadLocalRandom.current().nextInt(0, 1000);
 Individual firstInd = individuals.get(first);
 Individual secondInd = individuals.get(second);
 Individual newFirst = new Individual();
 Individual newSecond = new Individual();
 for (int j = 0; j < 1000; j++) {
 if(j < razrez) {
 newFirst.setGene(j, firstInd.getGene(j));
 newSecond.setGene(j, secondInd.getGene(j));
 } else {
 newFirst.setGene(j, secondInd.getGene(j));
 newSecond.setGene(j, firstInd.getGene(j));
 }
 }
 newIndividuals.add(newFirst);
 newIndividuals.add(newSecond);
 }
 newPopulation.setIndividuals(newIndividuals);
 pop = newPopulation;
 }
 System.out.println("===========================");
 for (int i = 0; i < tempList.size(); i++) {
 System.out.println(tempList.get(i));
 }
 }
}

After compiling the code, we have got next result — 66,6% good gens. Average value is the same.

Graph for best chromosomes:

Graph for average values from generation:

