Source code

Individual.java

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/* *
* Created by yauheni on 07.09.16.
*/
class Individual implements Comparable<Individual> {
public static final int GENE _LENGTH = 1000;
private List<Integer> genes;
private int fitnessValue;
public int getGene(int index) {
return genes.get(index);
}
public void setGene(int index, int gene) {
genes.set(index, gene);
}
public Individual() {
genes = new ArrayList<>();
for (int i = 0; i < GENE _LENGTH; ++i) {
genes.add(ThreadLocalRandom.current () .nextInt (0, 2));
}
}
public int getFitnessValue() {
return fitnessValue;
}
public void setFitnessValue(int fitnessValue) {
this.fitnessValue = fitnessValue;
}
public void generateIndividual() {
}
public int getFitness() {
int temp = 0;
for (int i = 0; i < genes.size(); i++) {
if(genes.get(i) == 1) {
temp++;
}
}

fitnessValue = temp;
return fitnessValue;

}
@Override
public int compareTo(Individual o) {
return (o.getFitness() > fitnessValue ? 1 : (o.getFitness() ==
fitnessvValue) ? 0 : -1);
}

Population.java

import java.util.=*;
class Population {
public static final int POPULATION SIZE = 100;
private List<Individual> individuals;
public Population(List<Individual> individuals) {
this.individuals = individuals;
}
public Population() {
}
public static Population newPopulation() {
Population pop = new Population();
List<Individual> list = new ArrayList<>();
for (int i = 0; i < 100; i++) {
list.add(new Individual());
}
pop.setIndividuals(list);
return pop;
}
public List<Individual> getIndividuals() {
return individuals;
}
public void setIndividuals(List<Individual> individuals) {
this.individuals = individuals;

}
public Individual getFittestIndividual() {
try {
Collections.sort(individuals);
}catch(Exception e) {
}
return individuals.get(0);
}
public double averageFitness() {
int temp = 0;
for (int i = 0; i < 100; i++) {
for (int j = 0; j < 1000; j++) {
if(individuals.get(i).getGene(j) == 1) {
temp++;
}
}
}
return temp/100;
}

public double getMax() {

int temp = 0;
Individual best = getFittestIndividual();
for (int i = 0; i < 1000; i++) {

if (best.getGene(i) == 1){

temp++;

}

}

return temp;

Main.java

public class Main {
public static void main(String[] args) {
Population pop = Population.newPopulation();
List<Double> tempList = new ArrayList<>();
int count=0;
while(true) {

if (pop.getMax() == pop.averageFitness())
count++;
if(count == 200)
break;
System.out.print(pop.getMax() + "\n");
tempList.add(pop.averageFitness());

Population newPopulation = new Population();
List<Individual> newIndividuals = new ArrayList<>(
List<Individual> individuals = pop.getIndividuals(
for (int i = 0; i < 50; i++) {
int first = ThreadLocalRandom.current().nextInt(0, 50);
int second = ThreadLocalRandom.current().nextInt(0, 50);
int razrez = ThreadLocalRandom.current().nextInt(0, 1000);
Individual firstInd = individuals.get(first);
Individual secondInd = individuals.get(second);
Individual newFirst = new Individual();
Individual newSecond = new Individual();
for (int j = 0; j < 1000; j++) {
if(j < razrez) {
newFirst.setGene(j, firstInd.getGene(j));
newSecond.setGene(j, secondInd.getGene(Jj));
} else {
newFirst.setGene(j, secondInd.getGene(j));
newSecond.setGene(j, firstInd.getGene(j));

)i
)i

¥
}

newIndividuals.add(newFirst);
newIndividuals.add(newSecond) ;
}
newPopulation.setIndividuals(newIndividuals);
pop = newPopulation;

}

system, out. println(N —=======) ;

for (int i = 0; i < tempList.size(); i++) {
System.out.println(tempList.get(i));

}

After compiling the code, we have got next result — 66,6% good gens. Average value is the same.

Graph for best chromosomes:

5 (=1} |

T00

600

" 200 — ey A ™

100

YAPR PR RRLESEDLRP P

Graph for average values from generation:

T00

600

I —CmE-E!.kB

100

