
Programm (Write in Java)

My program work while values no more 30 repeats.

Main.java:
package com.company;
import java.util.*;
import static java.util.Collections.swap;
public class Main {
 public static Integer[][] generation = new Integer[100][1000];
 public static Integer[][] good = new Integer[50][1000];
 public static Integer[][] childes = new Integer[50][1000];
 public static Integer childCount = 0;
 public static Integer checkCount = 0;
 public static Integer prevMax = 0;
 public static void main(String[] args) {
 createGenerate();
 while(true) {
 Arrays.sort(generation, new Comparator<Integer[]>() {
 @Override
 public int compare(Integer[] o1, Integer[] o2) {
 Integer int1 = rowCount(o1);
 Integer int2 = rowCount(o2);
 return int2 - int1;
 }
 });
 Integer max = rowCount(generation[0]);
 if(prevMax.equals(max))
 checkCount ++;
 else
 checkCount = 0;
 prevMax = max;
 System.out.print(max + " ");
 System.out.println(average());
 if(checkCount > 30) {
 return;
 }
 setGood();
 Random random = new Random();
 childCount = 0;
 for (int i = 0; i < 25; i++) {
 createChildes(good[random.nextInt(50)], good[random.nextInt(50)]);
 }
 createNewGeneration();
 }
 }

Function for generate start generation:

 public static void createGenerate() {
 Random random = new Random();
 for(int i=0;i<100;i++) {
 for(int j=0;j<1000;j++) {
 if(random.nextDouble() >=0.5)
 generation[i][j] = 1;
 else

 generation[i][j] = 0;
 }
 }
 }

Function for count “1” in one chromosome

 public static Integer rowCount(Integer[] obj) {
 Integer count = 0;
 for(int i=0;i<1000;i++) {
 count += obj[i];
 }
 return count;
 }

Function for creating good amiboes 'from' all

 public static void setGood() {
 for(int i =0; i< 50; i++) {
 good[i] = generation[i];
 }
 }

Function for cross 'parents' and create 'childs':

 public static void createChildes(Integer[] parent1, Integer[] parent2) {
 Random random = new Random();
 Integer delimiter = random.nextInt(1000);
 Integer[] child1 = new Integer[1000];
 Integer[] child2 = new Integer[1000];
 for(int i = 0;i<1000;i++) {
 if(i<=delimiter)
 child1[i] = parent1[i];
 else
 child1[i] = parent2[i];
 }
 for(int i = 0;i<1000;i++) {
 if(i<=delimiter)
 child2[i] = parent2[i];
 else
 child2[i] = parent1[i];
 }
 childes[childCount] = child1;
 childCount++;
 childes[childCount] = child2;
 childCount++;
 }

Function for create new generation from good and from childs (good+childs)

 public static void createNewGeneration() {
 for (int i=0;i<100;i++) {
 if(i<50)
 generation[i] = good[i];
 else
 generation[i] = childes[i-50];
 }

 }

Function for count average sum of '1' in all generation

 public static Integer average() {
 Integer s = 0;
 for (int i=0;i<100;i++) {
 s+= rowCount(generation[i]);
 }
 Integer average = s / 100;
 return average;
 }
}

After compliting program and analyze result, we can see, that alghoritm create chromosomes with
62.4% good gens. Average value equals with maximum value, but have less steps by iterations. When
we run program again, we can got a another results, its depends on random function on JVM.

Graph for greatest chromosomes

480

500

520

540

560

580

600

620

640

Column A

Graph for greatest average values from generation

0

100

200

300

400

500

600

700

Column B

