
1 exercise – Igor Kondraashuk

Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome – the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a onr-point-crossover.

5. Give the child a mutation with a probability of 1/1000 = 0.001.

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result: (1) Desplay the best chromosome in the 1st, an intermediate & final generation. (2)

Desplay the best and average fitness vs. generation.

Source code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace WindowsFormsApplication1
{
 class GA
 {
 List<List<Boolean>> arrBinChrom;
 public List<double> generationFitness;
 public List<double> theBestInGen;
 List<double> theAverInGen;
 double theBestFirst;
 double theBestLast;
 public GA()
 {
 theAverInGen = new List<double>();
 theBestInGen = new List<double>();
 generationFitness = new List<double>();
 Random random = new Random();
 arrBinChrom = new List<List<bool>>();
 for(int i=0;i<100;i++)
 {
 List<Boolean> tempBinChrom= new List<bool>();
 for (int j=0;j<1000;j++)
 {
 if (random.Next(2) == 0)
 tempBinChrom.Add(false);
 else
 tempBinChrom.Add(true);
 }
 arrBinChrom.Add(tempBinChrom);
 }
 generationFitness.Add(getFitnessGen(arrBinChrom));
 theBestFirst = getTheBestFitnessGen(arrBinChrom);
 theBestInGen.Add(theBestFirst);
 int k = 0;
 do
 {
 List<List<Boolean>> tempGen = getNextGen(arrBinChrom);
 generationFitness.Add(getFitnessGen(tempGen));
 theBestInGen.Add(getTheBestFitnessGen(tempGen));
 arrBinChrom = tempGen;
 k++;

 }
 while (!isReady(generationFitness));
 theBestLast = getTheBestFitnessGen(arrBinChrom);
 }
 Boolean isReady(List<double> fitness)
 {
 if (fitness.Count < 100)
 return false;
 else
 {
 for(int i=fitness.Count-100;i<fitness.Count;i++)
 {
 if ((int)fitness[fitness.Count - 100] != (int)fitness[i])
 return false;
 }
 return true;
 }
 }
 List<List<Boolean>> getNextGen(List<List<Boolean>> arrBinChrom)
 {
 //Getting fitness
 List<int> fitnessGen = new List<int>();
 for(int i=0;i<arrBinChrom.Count;i++)
 {
 fitnessGen.Add(getFitness(arrBinChrom[i]));
 }
 //Sorting by fitness
 for(int i=0;i<fitnessGen.Count;i++)
 {
 for(int j=fitnessGen.Count-1;j>i;j--)
 {
 if(fitnessGen[j]<fitnessGen[j-1])
 {
 int temp = fitnessGen[j];
 fitnessGen[j] = fitnessGen[j - 1];
 fitnessGen[j - 1] = temp;
 List<Boolean> tempGen = arrBinChrom[j];
 arrBinChrom[j] = arrBinChrom[j - 1];
 arrBinChrom[j - 1] = tempGen;
 }
 }
 }
 //Getting children
 Random random = new Random();
 List<List<Boolean>> newGen = new List<List<bool>>();
 for (int i=0;i<50;i++)
 {
 int numberFather= random.Next(50, 100);
 int numberMother = random.Next(50, 100);
 int poinCrossover = random.Next(0,1000);
 List<Boolean> firstChild = new List<bool>();
 for (int j = 0; j < poinCrossover; j++)
 {
 firstChild.Add(arrBinChrom[numberFather][j]);
 }
 for (int j = poinCrossover; j < 1000; j++)
 {
 firstChild.Add(arrBinChrom[numberMother][j]);
 }
 newGen.Add(firstChild);
 List<Boolean> seconChild = new List<bool>();
 for (int j = 0; j < poinCrossover; j++)
 {
 seconChild.Add(arrBinChrom[numberMother][j]);

 }
 for (int j = poinCrossover; j < 1000; j++)
 {
 seconChild.Add(arrBinChrom[numberFather][j]);
 }
 newGen.Add(seconChild);
 //Mutation
 for(int j=0;j<newGen.Count;j++)
 {
 int prob = random.Next(0, 1000);
 if(prob==777)
 {
 int number = random.Next(1000);
 if (newGen[j][number])
 newGen[j][number] = false;
 else
 newGen[j][number] = true;
 }
 }
 }
 return newGen;
 }
 int getFitness(List<Boolean> binChrom)
 {
 int fitness = 0;
 for(int i=0;i<binChrom.Count;i++)
 {
 if (binChrom[i])
 fitness++;
 }
 return fitness;
 }
 double getFitnessGen(List<List<Boolean>>gen)
 {
 int sum = 0;
 for(int i=0;i<gen.Count;i++)
 {
 sum += getFitness(gen[i]);
 }
 return (double)sum / 100;
 }

 double getTheBestFitnessGen(List<List<Boolean>> gen)
 {
 int max = 0;
 for (int i = 0; i < gen.Count; i++)
 {
 int fit=getFitness(gen[i]);
 if (fit > max)
 max = fit;
 }
 return max;
 }
 }
}

Result

First the best is 497

Last the best is 992

