1 exercise — Igor Kondraashuk

Conditions

. Create 100 random binary-chromosomes each with 1000 genes.

. Fitness is the number of “1” in one chromosome — the more the better.

. Select 2 chromosomes at random from the better half of the population.

. Create a child chromosome by a onr-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

. Repeat from 2. to 5. 100 times and create the next generation.

. Repeat 6. until the fitness value does not change any more

. Show the result: (1) Desplay the best chromosome in the 1st, an intermediate & final generation. (2)
Desplay the best and average fitness vs. generation.

0 N O UL WN B

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace WindowsFormsApplicationl

{

class GA
{
List<List<Boolean>> arrBinChrom;
public List<double> generationFitness;
public List<double> theBestInGen;
List<double> theAverInGen;
double theBestFirst;
double theBestlLast;
public GA()
{
theAverInGen = new List<double>();
theBestInGen = new List<double>();
generationFitness = new List<double>();
Random random = new Random();
arrBinChrom = new List<List<bool>>();
for(int i=0;i<100;i++)
{
List<Boolean> tempBinChrom= new List<bool>();
for (int j=0;j<1000;j++)
{
if (random.Next(2) == 0)
tempBinChrom.Add(false);
else
tempBinChrom.Add(true);
}
arrBinChrom.Add(tempBinChrom);
}
generationFitness.Add(getFitnessGen(arrBinChrom));
theBestFirst = getTheBestFitnessGen(arrBinChrom);
theBestInGen.Add(theBestFirst);
int k = 0;
do
{
List<List<Boolean>> tempGen = getNextGen(arrBinChrom);
generationFitness.Add(getFitnessGen(tempGen));
theBestInGen.Add(getTheBestFitnessGen(tempGen));
arrBinChrom = tempGen;
k++;



}

while (!isReady(generationFitness));
theBestLast = getTheBestFitnessGen(arrBinChrom);

}
Boolean isReady(List<double> fitness)
{
if (fitness.Count < 100)
return false;
else
{
for(int i=fitness.Count-100;i<fitness.Count;i++)
if ((int)fitness[fitness.Count - 100] != (int)fitness[i])
return false;
}
return true;
}
}

List<List<Boolean>> getNextGen(List<List<Boolean>> arrBinChrom)
{

//Getting fitness

List<int> fitnessGen = new List<int>();

for(int i=@;i<arrBinChrom.Count;i++)

{

}
//Sorting by fitness

for(int i=@;i<fitnessGen.Count;i++)

fitnessGen.Add(getFitness(arrBinChrom[i]));

{
for(int j=fitnessGen.Count-1;j>i;j--)
{
if(fitnessGen[j]<fitnessGen[j-1])
{
int temp = fitnessGen[j];
fitnessGen[j] = fitnessGen[]j - 1];
fitnessGen[j - 1] = temp;
List<Boolean> tempGen = arrBinChrom[j];
arrBinChrom[j] = arrBinChrom[j - 1];
arrBinChrom[j - 1] = tempGen;
}
}
}

//Getting children
Random random = new Random();
List<List<Boolean>> newGen = new List<List<bool>>();
for (int i=0;i<50;i++)
{
int numberFather= random.Next (50, 100);
int numberMother = random.Next(50, 100);
int poinCrossover = random.Next(0,1000);
List<Boolean> firstChild = new List<bool>();
for (int j = @; j < poinCrossover; j++)

{
firstChild.Add(arrBinChrom[numberFather][j]);
}
for (int j = poinCrossover; j < 1000; j++)
{

firstChild.Add(arrBinChrom[numberMother][j]);

newGen.Add(firstChild);
List<Boolean> seconChild = new List<bool>();
for (int j = ©; j < poinCrossover; j++)
{
seconChild.Add(arrBinChrom[numberMother][j]);



}

for (int j = poinCrossover; j < 1000; j++)

{
seconChild.Add(arrBinChrom[numberFather][j]);
}
newGen.Add(seconChild);
//Mutation
for(int j=0;j<newGen.Count;j++)
{
int prob = random.Next(©, 1000);
if(prob==777)
{
int number = random.Next(1000);
if (newGen[j][number])
newGen[j][number] = false;
else
newGen[j][number] = true;
}
}
}
return newGen;
}
int getFitness(List<Boolean> binChrom)
{
int fitness = 9;
for(int i=@;i<binChrom.Count;i++)
if (binChrom[i])
fitness++;
}
return fitness;
}
double getFitnessGen(List<List<Boolean>>gen)
{
int sum = 9;
for(int i=@;i<gen.Count;i++)
{
sum += getFitness(gen[i]);
}
return (double)sum / 100;
}

double getTheBestFitnessGen(List<List<Boolean>> gen)

{
int max = 9;
for (int i = @; i < gen.Count; i++)

{
int fit=getFitness(gen[i]);
if (fit > max)
max = fit;
}

return max;



Result

1000 ¥
992
3004
Ararage
The bast
600 Maximpm = 882
4001
2001
X
-t
00 1000 1300 2000 2500 3000 3300 4000 4300

First the best is 497
Last the best is 992



