Task 1

1. Create 100 random binary-chromosomes each with 1000 genes.

. Fitness is the number of "1" in one chromosome - the more the better.
. Select 2 chromosomes at random from the better half of the population.
. Create a child chromosome by a onr-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

» o1 B w N

. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Display the best chromosome in the 1st, an intermediate & final generation.

(2) Display the best and average fitness vs. generation.

Source code (Java)

import java.util.Arraylist;
import java.util.Arrays;
import java.util.Random;

public class Main
{
static class Chromosome
{
int[] genes;
Chromosome ()
{
genes = new int[1000];
for(int i = 0; i < genes.length; i++)
genes[i] = random.nextInt(2);
}
int GetFit()
{
int cnt = 0;
for(int i : genes)
if(i == 1)
cnt++;
return cnt;

}

static class Generation

{
Chromosome|[] chromosomes;
boolean isSorted = false;
Generation ()
{

chromosomes = new Chromosome[100];



for(int 1 = 0; i < chromosomes.length; i++)
chromosomes[i] = new Chromosome () ;
}
int getAverageFit ()
{
int cnt = 0;
for (Chromosome i : chromosomes)
cnt += i.GetFit();
return cnt / chromosomes.length;
}
void sort()
{
Arrays.sort(chromosomes, (ol, o2) ->
{
int olfit ol.GetFit() ;
int o02fit = 02.GetFit();
if(olfit < o2fit)
return 1;
else if (olfit > o2fit)
return -1;
else
return 0;

})
isSorted = true;
}
Chromosome[] TwoChromes ()
{
if (!'isSorted)
sort () ;
Chromosome[] random2 = new Chromosome[2];

random2 [0]
random2[1]

chromosomes [random.nextInt (50)];
chromosomes [random.nextInt (50)];

return random2;
}
Chromosome BestChrome ()
{
if('isSorted)
sort () ;
return chromosomes|[0];

static Random random;
static ArraylList<Generation> generations;
static ArraylList<Integer> fitnessHistory;

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt(first.genes.length) ;
Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint) ;
System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint) ;

if (random.nextInt (1000) == 871)
{

int pos = random.nextInt(child.genes.length) ;



if (child.genes[pos] == 0)
child.genes[pos] = 1;
else
child.genes[pos] = 0;

return child;

static boolean EndEvolution ()
{
int tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp==1000)
return true;
if (fitnessHistory.size () <= 100)
return false;
for(int i = 0; i < 100; i++)
if (fitnessHistory.get (fitnessHistory.size()-i-1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException
{

random = new Random(312456723) ;

fitnessHistory = new ArrayList<>();

generations = new ArrayList<>();

generations.add (new Generation()) ;

generations.get (0) .sort() ;

fitnessHistory.add (generations.get (0) .getAverageFit()) ;

/*System.out.println("Generation: 0; Fitness: " +
generations.get (0) .getAverageFit () +
"; Best chromosome: " + generations.get(0).BestChrome () .GetFit()) ;*/

System.out.println ("0 " +
/*generations.get (0) .getAverageFit () +*/
" " + generations.get(0) .BestChrome () .GetFit()) ;

for(int i = 1; ; i++)
{
Generation newGeneration = new Generation() ;
for(int j = 0; j < newGeneration.chromosomes.length; j++)
{
Chromosome[] random2 = generations.get(generations.size()-
1) .TwoChromes () ;
newGeneration.chromosomes[j] = crossover (random2[0], random2[1l]) ;
}
newGeneration.sort() ;
generations.add (newGeneration) ;
generations.remove (0) ;
fitnessHistory.add (newGeneration.getAverageFit()) ;
System.out.println(i /*+ " " + newGeneration.getAverageFit()*/ + " " +
newGeneration.BestChrome () .GetFit()) ;

if (EndEvolution())
break;

Thread.sleep(1000) ;



Result
1) The best chromosome in the 1 generation - 561;
The best chromosome in the 46000 generation - 992:
The best chromosome in the last (93666™) generation - 1000;
2)

Average:

4
104047

640-

3404

3000 3000 10000 13000 20000 23000 30000 33000 40000 43000 30000 33000 60000 63000 70000

Best:

10407

-

9001

2404

3901

3401

901

40T

6201~

6404 -

390--

54o~|~

13000

50000 83000

50000 93000

100000

X
Lk
4

L L L L L L L
| 10000 20000 30000 40000 50000 60000 70000

L
80000

L
50000

100000




r

404 ¥ iiii o=

Bast

L

L L L L L L L L L L I
10000 20000 30000 40000 30000 80000 70000 80000 90000 100000




