Task 1
1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of "1" in one chromosome - the more the better.
3. Select 2 chromosomes at random from the better half of the population.
4. Create a child chromosome by a one-point-crossover.
5. Give the child a mutation with a probability of 1/1000 = 0.001.
6. Repeat from 2. to 5. 100 times and create the next generation.
7. Repeat 6. until the fitness value does not change any more.
8. Show the result:
(1) Display the best chromosome in the 1st, an intermediate & final generation.
(2) Display the best and average fitness vs. generation.

Source code (Java)
package com.paulkugaev;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Random;

public class Main {

 static class Chromosome {

 int[] genes;
 Chromosome(){
 genes = new int[1000];
 for(int i =0;i<genes.length;i++)
 genes[i]=random.nextInt(2);
 }
 int getFitness(){
 int fitness = 0;
 for (int gene : genes)
 if (gene > 0)
 fitness += gene;
 return fitness;
 }
 }

 static class Generation {

 Chromosome[] chromosomes;
 boolean isSorted=false;

 Generation() {
 chromosomes = new Chromosome[100];
 for (int i = 0; i<chromosomes.length; i++) {
 chromosomes[i] = new Chromosome();
 }
 }

 int getAverageFitness() {
 int fitness=0;
 for(Chromosome i : chromosomes)
 fitness+=i.getFitness();
 return fitness / chromosomes.length;
 }

 void sort() {
 Arrays.sort(chromosomes, (o1, o2) -> {
 int fitnessFirst = o1.getFitness();
 int fitnessSecond = o2.getFitness();
 if(fitnessFirst<fitnessSecond)
 return 1;
 else if (fitnessFirst>fitnessSecond)
 return -1;
 else
 return 0;
 });
 }

 Chromosome[] getTwoRandomChromosomes() {
 if(!isSorted)
 sort();
 Chromosome[] randomTwo = new Chromosome[2];
 randomTwo[0] = chromosomes[random.nextInt(50)];
 randomTwo[1] = chromosomes[random.nextInt(50)];
 return randomTwo;
 }

 Chromosome getBest() {
 if(!isSorted)
 sort();
 return chromosomes[0];
 }

 }

 static Chromosome crossover(Chromosome first, Chromosome second){

 int crossoverPoint = random.nextInt(first.genes.length);
 Chromosome child = new Chromosome();
 System.arraycopy(first.genes,0,child.genes,0,crossoverPoint);
 System.arraycopy(second.genes,crossoverPoint,child.genes,crossoverPoint,second.genes.length-crossoverPoint);
 if(random.nextInt(1000) == 0) {
 int mutatedGeneIndex = random.nextInt(child.genes.length);
 child.genes[mutatedGeneIndex] = child.genes[mutatedGeneIndex] == 1 ? 0 : 1;
 }
 return child;
 }

 static boolean isLastHundredChanged() {
 int temp = fitnessHistory.get(fitnessHistory.size() - 1);
 if(temp==1000)
 return true;
 if(fitnessHistory.size() <= 100)
 return false;
 for(int i = 0; i < 100; i++)
 if(fitnessHistory.get(fitnessHistory.size()-i-1) != temp)
 return false;
 return true;
 }

 static Random random;
 static ArrayList<Generation> generations;
 static ArrayList<Integer> fitnessHistory;

 public static void main(String[] args) {
 random = new Random(System.currentTimeMillis());
 fitnessHistory = new ArrayList<>();

 generations = new ArrayList<>();
 generations.add(new Generation());
 generations.get(0).sort();
 fitnessHistory.add(generations.get(0).getAverageFitness());
 System.out.println("Generation index: 0; Fitness number: " +
 generations.get(0).getAverageFitness() +
 "; Best chromosome's fitness number: " + generations.get(0).getBest().getFitness());

 for(int i = 1;;i++){
 Generation nextGeneration = new Generation();
 for (int n = 0; n<nextGeneration.chromosomes.length; n++) {
 Chromosome[] randomTwo = generations.get(generations.size()-1).getTwoRandomChromosomes();
 nextGeneration.chromosomes[n] = crossover(randomTwo[0],randomTwo[1]);
 }
 nextGeneration.sort();
 generations.add(nextGeneration);
 generations.remove(0);
 fitnessHistory.add(nextGeneration.getAverageFitness());
 System.out.println("Generation index: "+i+"; Fitness number: " +
 nextGeneration.getAverageFitness() +
 "; Best chromosome's fitness number: " + nextGeneration.getBest().getFitness());
 if (isLastHundredChanged())
 break;
 }
 }
}
Result
1) The best chromosome in the first generation - 536;
 The best chromosome in the 36000 generation - 979;
 The best chromosome in the last (74915) generation - 998;

[bookmark: _GoBack]2)
 [image:]
image1.png
980-
850
780
680
580-
Generation
10000 20000 30000 40000 50000 60000 70000 0000

