1 — Andrei Abramchuk
Conditions

. Create 100 random binary-chromosomes each with 1000 genes.

. Fitness is the number of “1” in one chromosome — the more the better.

. Select 2 chromosomes at random from the better half of the population.
. Create a child chromosome by a one-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

. Repeat from 2. to 5. 100 times and create the next generation.

N OO o BW N

. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.
(2) Desplay the best and average fitness vs. generation.

Source code

import java.io.*;
import java.util.*;

public class AllOneProblem {

public ArrayList<ArrayList<Boolean>> binChrMas2 = new
ArrayList<ArrayList<Boolean>>();
public ArrayList<Integer> maxFitness = new ArrayList<Integer> ();
public Integer generation = 0;

public static void main(String[] args) {
AllOneProblem obj = new AllOneProblem() ;
obj.random() ;
boolean tmp = false;
int genNumber = 1;
while (tmp != true) {
obj.fun2();
int sch = obj.end();
genNumber++;
if (sch < 1) tmp = true;
//if (tmp != false) break;

}

public void random() {

ArrayList<Boolean> binChr = new ArrayList<Boolean>();
Random rand = new Random() ;
for (int a = 0; a < 100; a++) {

for (int b = 0; b < 1000; b++) {

binChr.add (rand.nextBoolean());
}
binChrMas?2.add (binChr) ;

}

public void fun2() {

Random rand = new Random() ;

ArraylList<Integer> fitnessMas = new ArrayList<Integer>();
Map<Integer, Integer> map = new HashMap<>();

for (int a = 0; a < binChrMas2.size(); a++) {

int fitnessChr = 0;
for (int b = 0; b < 1000; b++) {
if (binChrMas2.get (a).get(b) != false) fitnessChr++;
}
fitnessMas.add (fitnessChr) ;
map.put (a, fitnessChr);
}

Collections.sort (fitnessMas, new Comparator<Integer>() {
public int compare (Integer ol, Integer 02) {
return o2 - ol;

}
1)
if (fitnessMas.get(0) .equals(Collections.max (fitnessMas)))
System.out.println("Sorting was successful. Max fitness: " +
fitnessMas.get (0));



maxFitness.add (fitnessMas.get (0));
ArraylList<ArrayList<Boolean>> newGen = new ArraylList<ArrayList<Boolean>>();
for (int i = 0; 1 < 50; 1i++) {
int mama = fitnessMas.get (rand.nextInt (50)),
papa = fitnessMas.get (rand.nextInt (50));
mama = getValue (map, mama) ;
papa = getValue (map, papa):;
int cros_gen = rand.nextInt(998) + 1;
ArraylList<Boolean> firstChild = new ArrayList<Boolean>();
for (int j = 0; j < cros_gen; Jj++)
firstChild.add (binChrMas2.get (mama) .get (j)) s
for (int j = cros gen; j < 1000; j++)
firstChild.add (binChrMas2.get (papa) .get (j))
newGen.add (firstChild) ;
ArrayList<Boolean> seconChild = new ArrayList<Boolean>();
for (int j = 0; j < cros_gen; Jj++)
seconChild.add (binChrMas2.get (papa) .get (J));
for (int j = cros gen; j < 1000; j++)
seconChild.add (binChrMas2.get (mama) .get (J));
newGen.add (seconChild) ;
}
binChrMas2 = new ArrayList<ArrayList<Boolean>> (newGen) ;
for (int i = 0; i < binChrMas2.size(); i++)
for (int j = 0; j < binChrMas2.get(0).size(); J++)
if (rand.nextInt (1000) == 769) {
if (binChrMas2.get (i) .get(j) != true) {
ArrayList<Boolean> t = new
ArrayList<Boolean> (binChrMas2.get (i));
t.set(j, true);
binChrMas2.set (i, t);
} else {
ArrayList<Boolean> t = new
ArrayList<Boolean> (binChrMas2.get (i));
t.set(j, false);
binChrMas2.set (i, t);

Integer average = 0;

for (int i = 0; 1 < 100; i++)
average += fitnessMas.get (i) ;

average /= 100;

System.out.println ("Average value: " + average);

generation++;

write (fitnessMas.get (0) .toString(), average.toString(),
generation.toString());

}

public void write(String maxfitness, String average, String generation) {

try |
PrintStream printStreaml = new PrintStream (new
FileOutputStream("D:\\maxfitness.txt", true), true);
PrintStream printStream?2 = new PrintStream (new
FileOutputStream("D:\\average.txt", true), true);
PrintStream printStream3 = new PrintStream (new

FileOutputStream("D:\\generation.txt", true), true);

try |
//3anucHBaeM TEKCT
printStreaml.println (maxfitness);
printStream?2.println (average) ;
printStream3.println (generation);
} finally {
//Tlocyie yero Mel IOJIXKHHE 3aKpeITh Gars, MHaue Gaiy He 3anumeTcs
printStreaml.close ()
printStream2.close () ;
printStream3.close (),
}
} catch(IOException e) {
throw new RuntimeException (e);
}
}

public static Integer getValue (Map<Integer, Integer> map, Integer value) {
Set<Map.Entry<Integer, Integer>> entrySet = map.entrySet();
Integer desiredFitness = value;//4TO XOTUM HauTu
Integer key = 0;
for (Map.Entry<Integer, Integer> pair : entrySet) {



1100

900

700

500

300

100

-200
-100

300

if (desiredFitness.equals(pair.getValue())) {
key = pair.getKey();// HauwmM Hame 3HAUEHME U BO3BpallaeM

}
}

return key;

}

public int end() {

int sch = 0;
if (maxFitness.size() > 300) {
ArraylList<Integer> temp = new ArrayList<Integer> ();
for (int b = maxFitness.size() - 200; b < maxFitness.size();

temp.add (maxFitness.get (b)) ;
}

int m = Collections.max(temp), n = Collections.min (temp);
int k = m - n;
if (k > 3)
sch++;
}
else {

for (int a = 0; a < binChrMas2.size(); a++) {

for (int b = 0; b < 1000; b++) {
if (binChrMas2.get (a).get (b) != true)
sch++;
break;
}
}
if (sch > 0) break;
}
}

return sch;

Results

(1) Best chromosome: Start fitness: 526, Best fitness: 973.

800 1300 1800 2300 2800

Best Chromosome Best fitness = 973

{

3300

KJII0Y

b++)

3800

4300



(2) Fitness graph:

1000
900
800
700
600
500
400
300
200

100

0 500 1000 1500 2000 2500 3000 3500 4000

—@— Average fitness =~ ==®=—=Best Average fitness = 969

Best average fitness: 969.
Starting average fitness: 526.
Generations: 4208.



