
1 – Andrei Abramchuk 

Conditions 

 

1. Create 100 random binary-chromosomes each with 1000 genes.  

2. Fitness is the number of “1” in one chromosome – the more the better.  

3. Select 2 chromosomes at random from the better half of the population.  

4. Create a child chromosome by a one-point-crossover.  

5. Give the child a mutation with a probability of 1/1000 = 0.001.  

6. Repeat from 2. to 5. 100 times and create the next generation.  

7. Repeat 6. until the fitness value does not change any more.  

8. Show the result:  

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.  

(2) Desplay the best and average fitness vs. generation.  

 

Source code 
import java.io.*; 

import java.util.*; 

 

public class AllOneProblem { 

 

    public ArrayList<ArrayList<Boolean>> binChrMas2 = new    

ArrayList<ArrayList<Boolean>>(); 

public ArrayList<Integer> maxFitness = new ArrayList<Integer> (); 

    public Integer generation = 0; 

 

    public static void main(String[] args) { 

                AllOneProblem obj = new AllOneProblem(); 

        obj.random(); 

                boolean tmp = false; 

        int genNumber = 1; 

        while (tmp != true) { 

            obj.fun2(); 

            int sch = obj.end(); 

            genNumber++; 

            if (sch < 1) tmp = true; 

            //if (tmp != false) break; 

        } 

    } 

 

    public void random() { 

        ArrayList<Boolean> binChr = new ArrayList<Boolean>(); 

        Random rand = new Random(); 

        for (int a = 0; a < 100; a++) { 

            for (int b = 0; b < 1000; b++) { 

                binChr.add(rand.nextBoolean()); 

            } 

            binChrMas2.add(binChr); 

        } 

    } 

 

    public void fun2() { 

        Random rand = new Random(); 

        ArrayList<Integer> fitnessMas = new ArrayList<Integer>(); 

        Map<Integer, Integer> map = new HashMap<>(); 

        for (int a = 0; a < binChrMas2.size(); a++) { 

            int fitnessChr = 0; 

            for (int b = 0; b < 1000; b++) { 

                if (binChrMas2.get(a).get(b) != false) fitnessChr++; 

            } 

            fitnessMas.add(fitnessChr); 

            map.put(a, fitnessChr); 

        } 

        Collections.sort(fitnessMas, new Comparator<Integer>() { 

            public int compare(Integer o1, Integer o2) { 

                return o2 - o1; 

            } 

        }); 

        if (fitnessMas.get(0).equals(Collections.max(fitnessMas))) 

            System.out.println("Sorting was successful. Max fitness: " + 

fitnessMas.get(0)); 



        maxFitness.add(fitnessMas.get(0)); 

        ArrayList<ArrayList<Boolean>> newGen = new ArrayList<ArrayList<Boolean>>(); 

        for (int i = 0; i < 50; i++) { 

            int mama = fitnessMas.get(rand.nextInt(50)), 

                    papa = fitnessMas.get(rand.nextInt(50)); 

            mama = getValue(map, mama); 

            papa = getValue(map, papa); 

            int cros_gen = rand.nextInt(998) + 1; 

            ArrayList<Boolean> firstChild = new ArrayList<Boolean>(); 

            for (int j = 0; j < cros_gen; j++) 

                firstChild.add(binChrMas2.get(mama).get(j)); 

            for (int j = cros_gen; j < 1000; j++) 

                firstChild.add(binChrMas2.get(papa).get(j)); 

            newGen.add(firstChild); 

            ArrayList<Boolean> seconChild = new ArrayList<Boolean>(); 

            for (int j = 0; j < cros_gen; j++) 

                seconChild.add(binChrMas2.get(papa).get(j)); 

            for (int j = cros_gen; j < 1000; j++) 

                seconChild.add(binChrMas2.get(mama).get(j)); 

            newGen.add(seconChild); 

        } 

        binChrMas2 = new ArrayList<ArrayList<Boolean>>(newGen); 

        for (int i = 0; i < binChrMas2.size(); i++) 

            for (int j = 0; j < binChrMas2.get(0).size(); j++) 

                if (rand.nextInt(1000) == 769) { 

                    if (binChrMas2.get(i).get(j) != true) { 

                        ArrayList<Boolean> t = new 

ArrayList<Boolean>(binChrMas2.get(i)); 

                        t.set(j, true); 

                        binChrMas2.set(i, t); 

                    } else { 

                        ArrayList<Boolean> t = new 

ArrayList<Boolean>(binChrMas2.get(i)); 

                        t.set(j, false); 

                        binChrMas2.set(i, t); 

                    } 

                } 

 

        Integer average = 0; 

        for (int i = 0; i < 100; i++) 

            average += fitnessMas.get(i); 

        average /= 100; 

        System.out.println("Average value: " + average); 

        generation++; 

        write(fitnessMas.get(0).toString(), average.toString(), 

generation.toString()); 

    } 

 

    public void write(String maxfitness, String average, String generation) { 

 

        try { 

            PrintStream printStream1 = new PrintStream(new 

FileOutputStream("D:\\maxfitness.txt", true), true); 

            PrintStream printStream2 = new PrintStream(new 

FileOutputStream("D:\\average.txt", true), true); 

            PrintStream printStream3 = new PrintStream(new 

FileOutputStream("D:\\generation.txt", true), true); 

 

            try { 

                //Записываем текст 

                printStream1.println(maxfitness); 

                printStream2.println(average); 

                printStream3.println(generation); 

            } finally { 

                //После чего мы должны закрыть файл, Иначе файл не запишется 

                printStream1.close(); 

                printStream2.close(); 

                printStream3.close(); 

            } 

        } catch(IOException e) { 

            throw new RuntimeException(e); 

        } 

    } 

 

    public static Integer getValue(Map<Integer, Integer> map, Integer value) { 

        Set<Map.Entry<Integer, Integer>> entrySet = map.entrySet(); 

        Integer desiredFitness = value;//что хотим найти 

        Integer key = 0; 

        for (Map.Entry<Integer, Integer> pair : entrySet) { 



            if (desiredFitness.equals(pair.getValue())) { 

                key = pair.getKey();// нашли наше значение и возвращаем  ключ 

            } 

        } 

        return key; 

    } 

 

    public int end() { 

        int sch = 0; 

        if (maxFitness.size() > 300) { 

            ArrayList<Integer> temp = new ArrayList<Integer> (); 

            for (int b = maxFitness.size() - 200; b < maxFitness.size(); b++) { 

                temp.add(maxFitness.get(b)); 

            } 

            int m = Collections.max(temp), n = Collections.min(temp); 

            int k = m - n; 

            if (k > 3) 

                sch++; 

        } 

        else { 

            for (int a = 0; a < binChrMas2.size(); a++) { 

                for (int b = 0; b < 1000; b++) { 

                    if (binChrMas2.get(a).get(b) != true) { 

                        sch++; 

                        break; 

                    } 

                } 

                if (sch > 0) break; 

            } 

        } 

        return sch; 

    } 

} 

 

Results 

 

(1) Best chromosome: Start fitness: 526, Best fitness: 973. 

 
 

 

 

 

 

-100

100

300

500

700

900

1100

-200 300 800 1300 1800 2300 2800 3300 3800 4300

Best Chromosome Best fitness = 973



(2) Fitness graph: 

 
 

Best average fitness: 969. 

 Starting average fitness: 526. 

 Generations: 4208. 

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000

Average fitness Best Average fitness = 969


