
MINISTRY OF EDUCATION REPUBLIC OF ESTABLISHMENT OF EDUCATION "BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №1
«Evolutionary Computation»
Subject: «All One Problem»

 Made by:
Vladislav Shukalo
Checked by:
Pr. Imada
2016

Task
[image: C:\Users\Шукало\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screenshot_4.jpg]

Code(C++):
#include <iostream>
#include <string>
#include <Windows.h>
#include <vector>

using namespace std;

int main()
{
	vector<int> bc; //vector1 - best chromosom
	vector<int> af; //vector2 - average fitness

	int ch[100][1000]; //massive of chromosom
	int child[100][1000]; //massive of children
	int a[100]; //massive fitness of chromosom
	int fi[20][3];
	int n = 0, v = 0;
	int x1, x2, d, g=1;
	for (int i = 0; i < 5; i++)
	{
		for (int f = 0; f < 3; f++)
		{
			fi[i][f] = 0;
		}
	}
	for (int i = 0; i < 100; i++) //input 1-st generation
	{
		for (int f = 0; f < 1000; f++)
		{
			ch[i][f] = rand() % 2;
		}
	}
	for (int i = 0; i < 100; i++) //calculate fitness of each chromosom
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (ch[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++) //sorting 1-st generation and fitness values
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(ch[j], ch[j - 1]);
			}
		}
	}
	bc.push_back(a[1]); //calculating best and average fitness of generation
	int y1 = 0;
	for (int i = 0; i < 100; i++)
	{
		y1 = y1 + a[i];
	}
	af.push_back(y1/100);
	cout << bc[0] << ' ';
	for (int end = 0; end==0;)
	{
	//---
	for (int s = 0; s < 100; s++) //making next generation of chromosom
	{
		x1 = rand() % 50;
		x2 = rand() % 50;
		d = rand() % 1000;
		for (int i = 0; i < d; i++)
		{
			child[s][i] = ch[x1][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			child[s][i] = ch[x2][i];
		}
		s = s + 1;
		for (int i = 0; i < d; i++)
		{
			child[s][i] = ch[x2][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			child[s][i] = ch[x1][i];
		}
	}

	for (int i = 0; i < 100; i++) //mutation 1
	{
		for (int f = 0; f < 1000; f++)
		{
			int mut = rand() % 1000;
			if (mut = 0) {
				if (child[i][f] == 0) child[i][f] = 1;
				if (child[i][f] == 1) child[i][f] = 0;
			}
		}
	}
	for (int i = 0; i < 100; i++)
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (child[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++) //sorting 1
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(child[j], child[j - 1]);

			}
		}
	}
	bc.push_back(a[1]); //calculating best and average fitness of generation
	int y2 = 0;
	for (int i = 0; i < 100; i++)
	{
		y2 = y2 + a[i];
	}
	af.push_back(y2 / 100);
	cout << bc[g] << ' ';
	if (g > 1)
	{
		if (bc[g] == bc[g - 1] || bc[g] == bc[g - 2])
		{
			v = v + 1;
		}
		else v = 0;
	}
	if (bc[g] == 1000 || v == 100) end = 1;
	g++;

	for (int s = 0; s < 100; s++) //making next generation of chromosom 2
	{
		x1 = rand() % 50;
		x2 = rand() % 50;
		d = rand() % 1000;
		for (int i = 0; i < d; i++)
		{
			ch[s][i] = child[x1][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			ch[s][i] = child[x2][i];
		}
		s = s + 1;
		for (int i = 0; i < d; i++)
		{
			ch[s][i] = child[x2][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			ch[s][i] = child[x1][i];
		}
	}

	for (int i = 0; i < 100; i++) //mutation 2
	{
		for (int f = 0; f < 1000; f++)
		{
			int mut = rand() % 1000;
			if (mut = 0) {
				if (ch[i][f] == 0) ch[i][f] = 1;
				if (ch[i][f] == 1) ch[i][f] = 0;
			}
		}
	}
	for (int i = 0; i < 100; i++)
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (ch[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++) //sorting 2
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(ch[j], ch[j - 1]);
			}
		}
	}
	bc.push_back(a[1]); //calculating best and average fitness of generation
	int y3 = 0;
	for (int i = 0; i < 100; i++)
	{
		y3 = y3 + a[i];
	}
	af.push_back(y3 / 100);
	cout << bc[g] << ' ';
	if (bc[g] == bc[g - 1] || bc[g] == bc[g - 2])
	{
		v = v + 1;
	}
	else v = 0;
	if (bc[g] == 1000 || v == 100) end = 1;
	g++;
}
cout << endl<<"---";
cout <<endl<< "Best chromosom in 1-st generation:"<<bc[1];
cout << endl << "Best chromosom in intermediate generation:" <<bc[bc.size()/2];
cout << endl << "Best chromosom in final generation:" <<bc[bc.size()-1]<< endl<<endl;
cout << "Click ENTER to continue and display best and average fitness vs generation..."<< endl;
	system("pause");
	for (int i = 0; i < bc.size(); i++)
	{
		cout << "Generation " << i + 1 << ": " << "best:" << bc[i] << " average:" << af[i] << endl;
	}

	system("pause");
	return 0;
}

Result
[image:]
[image:]
[image:]
Describtion
I decided to perform a task in C ++. Workspace: visual studio 2015.

At first i Create 100 random binary-chromosomes each with 1000 genes. Then I defined fitness - is the number of “1” in one chromosome – the more the better. After that selected 2 chromosomes at random from the better half of the population and created a child chromosome by a onr-point-crossover. Then I gived the child a mutation with a probability of 1/1000 = 0.001 and repeated cycle 100 times and created the next generation. After that repeated until the fitness value does not change any more(100 reps).
[bookmark: _GoBack]
image1.jpeg
Exercise 1 1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of “1” in one chromosome — the more the better.

Select 2 chromosomes at random from the better half of the population.

Create a child chromosome by a onr-point-crossover.

Give the child a mutation with a probability of 1/1000 = 0.001.

Repeat from 2. to 5. 100 times and create the next generation.

Repeat 6. until the fitness value does not change any more.

Show the result:

ES SR e

(1) Desplay the best chromosome in the 1st, an intermediate € final generation.

(2) Desplay the best and average fitness vs. generation.

image2.png
LLykano\Do

542
45
=
=
=
=
=
=
=
=
72
72
74
75
76
76
=
53
=
57
=
=
=
=
658

539
545
649
652
657
659
663
662
663
566
569
72
675
676
676
674
676
685
683
685
684
686
657
657
688

542
545
655
655
657
662
662
664
668
668
72
72
674
676
675
678
B
685
685
657
689
688
e
e
688

536
545
651
653
658
659
661
661
663
566
668
674
675
676
676
676
678
683
684
685
684
686
657
657
688

543
650
655
655
657
660
662
664
668
666
72
72
674
676
675
678
651
685
685
e
689
688
e
e
689

541
545
651
653
658
660
661
561
664
566
70
675
675
676
676
676
79
683
684
685
684
686
657
657
688

543
653
653
656
657
660
662
663
668
667
72
72
674
676
675
678
651
685
685
e
689
688
e
e
689

541
545
651
655
658
662
661
663
664
566
71
74
675
676
674
676
652
683
684
e
654
686
657
657
688

542
547
651
655
658
662
662
662
664
667
70
74
675
676
674
676
685
652
684
e
654
657
657
657
688

545
651
655
656
658
662
664
665
668
71
72
72
674
676
676
651
683
685
685
e
e
e
e
e
689

644
547
652
655
658
662
662
663
664
667
70
74
675
676
674
676
685
652
685
e
685
657
657
657
688

543
652
655
655
658
662
665
665
668
71
72
72
674
676
676
651
683
685
685
e
e
e
e
e
689

543
545
652
655
560
662
662
663
566
669
71
674
676
676
674
676
685
652
685
654
685
657
657
657
688

545
649
653
656
660
662
661
662
566
669
70
675
676
676
675
676
685
652
685
685
685
657
657
688
688

547
652
654
658
659
662
665
665
668
71
72
74
675
676
676
651
e
685
685
689
688
e
e
S

545
649
653
656
660
662
662
663
566
669
70
675
676
676
674
676
685
654
685
685
685
657
657
=

649
653
654
660
658
662
566
665
668
71
72
74
675
676
676
651
683
685
685
689
657
688
e
S

545 1N
650
653
657
659
663
662
663
566
669
71
675
676
676
674
676
685
654
685
654
685
657
657
=

image3.png
gaagaaesse
88888

§33888

88883888888
53833838383
$8883388888
538338

33583583808 88888
5388388888388888
5535588805 588388
5388388888388888
$5855888558883888
$888388888388888
$585588885888888
$388388888388888
$585588855888388
$388388888388888
$585588888

83

§

8

§

8
8
8
8

R

3888
338888 BEgt
88888

8
8
8
8
8
8
8
8

w
m7777
g8a8s
gegas
B38gageaaes
$333888888

493

intermediate generat

1-st generat

Best chromosom
Best chromosom
Best chromosom

6%

son:700

1 generat

in

tness vs generat:

lay best and average Fi

isp)

1ick ENTER to continue and d

image4.png
eneration 1438: best:699 average:695 ~
eneration 1439: best:70@ average:696
eneration 1440: best:699 average:695
eneration 1441: best:700 average:696
eneration 1442: best:699 average:695
eneration 1443: best:70@ average:696
eneration 1444: best:699 average:695
eneration 1445: best:70@ average:696
eneration 1446: best:699 average:695
eneration 1447: best:700 average:696
eneration 1448: best:699 average:695
eneration 1449: best:70@ average:696
eneration 1450: best:699 average:695
eneration 1451: best:700 average:696
eneration 1452: best:699 average:695
eneration 1453: best:70@ average:696
eneration 1454: best:699 average:695
eneration 1455: best:70@ average:696
eneration 1456: best:699 average:695
eneration 1457: best:70@ average:696
eneration 1458: best:699 average:695
eneration 1459: best:70@ average:696
eneration 1460: best:699 average:695
eneration 1461: best:700 average:696
105l NDORONXEHHA HAXMHTE MOBYI0 KNaBHEY . . . v

