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Code(C++):
#include <iostream>
#include <string>
#include <Windows.h>
#include <vector>

using namespace std;

int main()
{
	vector<int> bc; //vector1 - best chromosom
	vector<int> af; //vector2 - average fitness

	int ch[100][1000];  //massive of chromosom
	int child[100][1000];  //massive of children
	int a[100]; //massive fitness of chromosom
	int fi[20][3];
	int n = 0, v = 0;
	int x1, x2, d, g=1;
	for (int i = 0; i < 5; i++)
	{
		for (int f = 0; f < 3; f++)
		{
			fi[i][f] = 0;
		}
	}
	for (int i = 0; i < 100; i++)   //input 1-st generation
	{
		for (int f = 0; f < 1000; f++)
		{
			ch[i][f] = rand() % 2;
		}
	}
	for (int i = 0; i < 100; i++)   //calculate fitness of each chromosom
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (ch[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++)    //sorting 1-st generation and fitness values
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(ch[j], ch[j - 1]);
			}
		}
	} 
	bc.push_back(a[1]);       //calculating best and average fitness of generation
	int  y1 = 0;
	for (int i = 0; i < 100; i++)
	{
		y1 = y1 + a[i];
	}
	af.push_back(y1/100);
	cout << bc[0] << ' ';
	for (int end = 0; end==0;)
	{
	//---------------------------------------------------------------
	for (int s = 0; s < 100; s++)  //making next generation of chromosom
	{
		x1 = rand() % 50;
		x2 = rand() % 50;
		d = rand() % 1000;
		for (int i = 0; i < d; i++)
		{
			child[s][i] = ch[x1][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			child[s][i] = ch[x2][i];
		}
		s = s + 1;
		for (int i = 0; i < d; i++)
		{
			child[s][i] = ch[x2][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			child[s][i] = ch[x1][i];
		}
	}

	for (int i = 0; i < 100; i++)   //mutation 1
	{
		for (int f = 0; f < 1000; f++)
		{
			int mut = rand() % 1000;
			if (mut = 0) {
				if (child[i][f] == 0) child[i][f] = 1;
				if (child[i][f] == 1) child[i][f] = 0;
			}
		}
	}
	for (int i = 0; i < 100; i++)
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (child[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++)    //sorting 1
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(child[j], child[j - 1]);

			}
		}
	}
	bc.push_back(a[1]);       //calculating best and average fitness of generation
	int  y2 = 0;
	for (int i = 0; i < 100; i++)
	{
		y2 = y2 + a[i];
	}
	af.push_back(y2 / 100);
	cout << bc[g] << ' ';
	if (g > 1)
	{
		if (bc[g] == bc[g - 1] || bc[g] == bc[g - 2])
		{
			v = v + 1;
		}
		else v = 0;
	}
	if (bc[g] == 1000 || v == 100) end = 1;
	g++;

	for (int s = 0; s < 100; s++)  //making next generation of chromosom 2
	{
		x1 = rand() % 50;
		x2 = rand() % 50;
		d = rand() % 1000;
		for (int i = 0; i < d; i++)
		{
			ch[s][i] = child[x1][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			ch[s][i] = child[x2][i];
		}
		s = s + 1;
		for (int i = 0; i < d; i++)
		{
			ch[s][i] = child[x2][i];
		}
		for (int i = d; i > d && i < 1000; i++)
		{
			ch[s][i] = child[x1][i];
		}
	}

	for (int i = 0; i < 100; i++)   //mutation 2
	{
		for (int f = 0; f < 1000; f++)
		{
			int mut = rand() % 1000;
			if (mut = 0) {
				if (ch[i][f] == 0) ch[i][f] = 1;
				if (ch[i][f] == 1) ch[i][f] = 0;
			}
		}
	}
	for (int i = 0; i < 100; i++)
	{
		a[i] = 0;
		for (int f = 0; f < 1000; f++)
		{
			if (ch[i][f] == 1) { a[i] = a[i] + 1; }
		}
	}

	for (int i = 0; i < 100; i++)    //sorting 2
	{
		for (int j = 100 - 1; j > i; j--)
		{
			if (a[j] > a[j - 1])
			{
				swap(a[j], a[j - 1]);
				swap(ch[j], ch[j - 1]);
			}
		}
	}
	bc.push_back(a[1]);       //calculating best and average fitness of generation
	int  y3 = 0;
	for (int i = 0; i < 100; i++)
	{
		y3 = y3 + a[i];
	}
	af.push_back(y3 / 100);
	cout << bc[g] << ' ';
	if (bc[g] == bc[g - 1] || bc[g] == bc[g - 2])
	{
		v = v + 1;
	}
	else v = 0;
	if (bc[g] == 1000 || v == 100) end = 1;
	g++;
}
cout << endl<<"-------------------------------------------------------------------------------------------";
cout <<endl<< "Best chromosom in 1-st generation:"<<bc[1];
cout << endl << "Best chromosom in intermediate generation:" <<bc[bc.size()/2];
cout << endl << "Best chromosom in final generation:" <<bc[bc.size()-1]<< endl<<endl;
cout << "Click ENTER to continue and display best and average fitness vs generation..."<< endl;
	system("pause");
	for (int i = 0; i < bc.size(); i++)
	{
		cout << "Generation " << i + 1 << ": " << "best:" << bc[i] << " average:" << af[i] << endl;
	}

	system("pause");
	return 0;
}
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Describtion 
I decided to perform a task in C ++. Workspace: visual studio 2015.

At first i Create 100 random binary-chromosomes each with 1000 genes. Then I defined fitness - is the number of “1” in one chromosome – the more the better. After that selected 2 chromosomes at random from the better half of the population and created a child chromosome by a onr-point-crossover. Then I gived the child a mutation with a probability of 1/1000 = 0.001 and repeated cycle 100 times and created the next generation. After that repeated until the fitness value does not change any more(100 reps).
[bookmark: _GoBack]
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Exercise 1 1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of “1” in one chromosome — the more the better.

Select 2 chromosomes at random from the better half of the population.

Create a child chromosome by a onr-point-crossover.

Give the child a mutation with a probability of 1/1000 = 0.001.

Repeat from 2. to 5. 100 times and create the next generation.

Repeat 6. until the fitness value does not change any more.

Show the result:

ES SR e

(1) Desplay the best chromosome in the 1st, an intermediate € final generation.

(2) Desplay the best and average fitness vs. generation.
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