1 exercise — Kirill Zabrodsky
Conditions

1.
. Fitness is the number of “1”” in one chromosome — the more the better.

. Select 2 chromosomes at random from the better half of the population.

. Create a child chromosome by a onr-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

. Repeat from 2. to 5. 100 times and create the next generation.

. Repeat 6. until the fitness value does not change any more.

. Show the result: (1) Desplay the best chromosome in the 1st, an intermediate &
inal generation. (2) Desplay the best and average fitness vs. generation.

O ~NO Ol Wi

—h

Create 100 random binary-chromosomes each with 1000 genes.

Source code:

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Text;

using System.Threading.Tasks;

namespace WindowsFormsApplicationl

{

public class GENALG

{

List<List<Boolean>> masbinChr;
public List<double> genFit;
public List<double> BestInGen;
List<double> AverInGen;

double BestFirst;

double BestlLast;

public GENALG()

{

AverInGen = new List<double>();
BestInGen = new List<double>();
genFit = new List<double>();

Random random = new Random();
masbinChr = new List<List<bool>>();
for(int i=0;i<100;i++)

{

List<Boolean> tempBinChrom= new List<bool>();
for (int j=0;j<1000;j++)

if (random.Next(2) == )
tempBinChrom.Add(false);
else
tempBinChrom.Add(true);

}

masbinChr.Add(tempBinChrom);

}

genFit.Add(getFitnessGen(masbinChr));
BestFirst = getTheBestFitnessGen(masbinChr);
int k = 0;

do

{

List<List<Boolean>> tempGen = getNextGen(masbinChr);
genFit.Add(getFitnessGen(tempGen));
BestInGen.Add(getTheBestFitnessGen(tempGen));
masbinChr = tempGen;



k++;

}

while (!isReady(genFit));

BestLast = getTheBestFitnessGen(masbinChr);
}

Boolean isReady(List<double> fitness)
{

if (fitness.Count < 100)

return false;

else

{

for(int i=fitness.Count-100;i<fitness.Count;i++)

if ((int)fitness[fitness.Count - 100] != (int)fitness[i])
return false;

}

return true;

}

}

List<List<Boolean>> getNextGen(List<List<Boolean>> masbinChr)
{

//Getting fitness

List<int> fitnessGen = new List<int>();

for(int i=0@;i<masbinChr.Count;i++)

{

fitnessGen.Add(getFitness(masbinChr[i]));

}

//Sorting by fitness

for(int i=0;i<fitnessGen.Count;i++)

{

for(int j=fitnessGen.Count-1;3j>i;j--)

if(fitnessGen[j]<fitnessGen[j-1])

{

int temp = fitnessGen[j];
fitnessGen[j] = fitnessGen[j - 1];
fitnessGen[j - 1] = temp;
List<Boolean> tempGen = masbinChr[j];
masbinChr[j] = masbinChr[j - 1];
masbinChr[j - 1] = tempGen;

}

}

}
//Getting children

Random random = new Random();
List<List<Boolean>> newGen = new List<List<bool>>();
for (int i=0;i<50;i++)

{

int numberFather= random.Next(50, 100);

int numberMother = random.Next(50, 100);

int poinCrossover = random.Next(0,1000);
List<Boolean> firstChild = new List<bool>();
for (int j = ©; j < poinCrossover; j++)

{
firstChild.Add(masbinChr[numberFather][j]);
}

for (int j = poinCrossover; j < 1000; j++)

{
firstChild.Add(masbinChr[numberMother][j]);
}

newGen.Add(firstChild);

List<Boolean> seconChild = new List<bool>();
for (int j = @; j < poinCrossover; j++)

{



seconChild.Add(masbinChr[numberMother][j]);
}

for (int j = poinCrossover; j < 1000; j++)

seconChild.Add(masbinChr[numberFather][j]);
}

newGen.Add(seconChild);
//Mutation

for(int j=0;j<newGen.Count;j++)
{

int prob = random.Next(©, 1000);
if(prob==777)

{

int number = random.Next(1000);
if (newGen[j][number])
newGen[j][number] = false;

else

newGen[j][number] = true;

}

}

return newGen;

}

int getFitness(List<Boolean> binChrom)
{

int fitness = 0;

for(int i=0@;i<binChrom.Count;i++)
{

if (binChrom[i])

fitness++;

}

return fitness;

}

double getFitnessGen(List<List<Boolean>>gen)

{
int sum = 9;
for(int i=0@;i<gen.Count;i++)

{

sum += getFitness(gen[i]);
}

return (double)sum / 100;
}

double getTheBestFitnessGen(List<List<Boolean>> gen)
{

int maximal = 9;

for (int i = @; i < gen.Count; i++)
{

int fit=getFitness(gen[i]);

if (fit > maximal)

maximal = fit;

¥

return maximal;

}

}

}



B

2001

600

Average

Result

I
M| 200 400 600 80
Best

First the best is 542
Last the best is 1000



