1 exercise —Alex Golodko

Conditions
1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of “1” in one chromosome — the more the better.
3. Select 2 chromosomes at random from the better half of the population.
4. Create a child chromosome by a onr-point-crossover.
5. Give the child a mutation with a probability of 1/1000 = 0.001.
6. Repeat from 2. to 5. 100 times and create the next generation.
7. Repeat 6. until the fitness value does not change any more.

8. Show the result: (1) Desplay the best chromosome in the 1st, an intermediate & final generation.
(2) Desplay the best and average fitness vs. generation.

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace WindowsFormsApplicationl

{
public class GA

{
List<List<Boolean>> Chromosomes;
public List<double> arrBinChrom;
public List<double> theBestInGen;
List<double> theAverInGen;
double theBestFirst;
double theBestlLast;
public GA()
{
theAverInGen = new List<double>();
theBestInGen = new List<double>();
generationFitness = new List<double>();
Random random = new Random();
Chromosomes = new List<List<bool>>();
for(int i=0;i<100;i++)
{
List<Boolean> tempBinChrom= new List<bool>();
for (int j=0;3j<1000;j++)
{
if (random.Next(2) == @)
tempBinChrom.Add(false);
else
tempBinChrom.Add(true);
}

Chromosomes .Add (tempBinChrom);
}
generationFitness.Add(getFitnessofGen(Chromosomes));
theBestFirst = getTheBestFitnessofGen(Chromosomes);
int k = 0;
do

List<List<Boolean>> tempGen = getNextGeneration(Chromosomes);
generationFitness.Add(getFitnessofGen(tempGen));
theBestInGen.Add(getTheBestFitnessofGen(tempGen));
Chromosomes = tempGen;

k++;

}

while (!IsGood(generationFitness));
theBestLast = getTheBestFitnessofGen(Chromosomes);

}

Boolean IsGood(List<double> fitness)

if (fitness.Count < 100)
return false;

else
{
for(int i=fitness.Count-100;i<fitness.Count;i++)
{
if ((int)fitness[fitness.Count - 100] != (int)fitness[i])
return false;
}

return true;
}
}
List<List<Boolean>> getNextGeneration(List<List<Boolean>> Chromosomes)

{
//Getting fitness
List<int> fitnessofGen = new List<int>();
for(int i=@;i<Chromosomes.Count;i++)

{

}
//Sorting by fitness

for(int i=@;i<fitnessofGen.Count;i++)

fitnessofGen.Add(getFitness(Chromosomes[i]));

{
for(int j=fitnessofGen.Count-1;3j>i;j--)
if(fitnessofGen[j]<fitnessofGen[j-1])
{
int temp = fitnessofGen[j];
fitnessofGen[j] = fitnessofGen[]j - 1];
fitnessofGen[j - 1] = temp;
List<Boolean> tempGen = Chromosomes[j];
Chromosomes[j] = Chromosomes[]j - 1];
Chromosomes[j - 1] = tempGen;
}
}
}

//Getting children
Random random = new Random();
List<List<Boolean>> newGen = new List<List<bool>>();
for (int i=0;i<50;i++)
{
int numberFather= random.Next(50, 100);
int numberMother = random.Next(50, 100);
int poinCrossover = random.Next(0,1000);
List<Boolean> firstChild = new List<bool>();
for (int j = @; j < poinCrossover; j++)

{
firstChild.Add(Chromosomes[numberFather][j]);
}
for (int j = poinCrossover; j < 1000; j++)
{

firstChild.Add(Chromosomes[numberMother][j]);

}
newGen.Add(firstChild);
List<Boolean> seconChild = new List<bool>();
for (int j = @; j < poinCrossover; j++)

{
seconChild.Add(Chromosomes[numberMother][j]);
}
for (int j = poinCrossover; j < 1000; j++)
{

seconChild.Add(Chromosomes[numberFather][j]);

newGen.Add(seconChild);
//Mutation
for(int j=©;j<newGen.Count;j++)
{
int prob = random.Next (@, 1000);
if(prob==777)
{
int number = random.Next(1000);
if (newGen[j][number])
newGen[j][number] = false;
else
newGen[j][number]

true;

}
}

return newGen;

}

int getFitness(List<Boolean> binChrom)

{
int fitness = 9;
for(int i=@;i<binChrom.Count;i++)

if (binChrom[i])
fitness++;

}

return fitness;

}

double getFitnessofGen(List<List<Boolean>>gen)

{
int sum = 9;
for(int i=@;i<gen.Count;i++)

{

}
return (double)sum / 100;

sum += getFitness(gen[i]);

}

double getTheBestFitnessofGen(List<List<Boolean>> gen)
{

int max = 9;
for (int i = @; i < gen.Count; i++)

{
int fit=getFitness(gen[i]);
if (fit > max)
max = fit;
}

return max;

1000+

997

200

800

7004

300

400+

3004

200+

1004

| | | | | | | |
0 5000 1000 1500 2000 2500 3000 3500 4000 4500

0

First the best is 532
Last the best is 977

