
Task 1
1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of "1" in one chromosome - the more the better.
3. Select 2 chromosomes at random from the better half of the population.
4. Create a child chromosome by a onr-point-crossover.
5. Give the child a mutation with a probability of 1/1000 = 0.001.
6. Repeat from 2. to 5. 100 times and create the next generation.
7. Repeat 6. until the fitness value does not change any more.
8. Show the result:
(1) Display the best chromosome in the 1st, an intermediate & final generation.
(2) Display the best and average fitness vs. generation.

Source code (Java)
import java.util.ArrayList; import java.util.Arrays; import java.util.Random; public class Main { static class Chromosome
 { int[] genes;
 Chromosome() { genes = new int[1000]; for(int i = 0; i < genes.length; i++) genes[i] = random.nextInt(2);
 } int getFitness() { int cnt = 0; for(int i : genes) if(i == 1) cnt++; return cnt;
 } } static class Generation { Chromosome[] chromosomes; boolean isSorted = false;
 Generation() { chromosomes = new Chromosome[100]; for(int i = 0; i < chromosomes.length; i++) chromosomes[i] = new Chromosome();
 }

 int getAverageFitness() { int cnt = 0; for(Chromosome i : chromosomes)
 cnt += i.getFitness(); return cnt / chromosomes.length; } void sort() { Arrays.sort(chromosomes, (o1, o2) -> { int o1fit = o1.getFitness(); int o2fit = o2.getFitness(); if(o1fit < o2fit) return 1; else if(o1fit > o2fit) return -1; else return 0;
 }); isSorted = true; } Chromosome[] get2RandomChromosomes() { if(!isSorted) sort(); Chromosome[] random2 = new Chromosome[2];
 random2[0] = chromosomes[random.nextInt(50)]; random2[1] = chromosomes[random.nextInt(50)]; return random2;
 } Chromosome getBestChromosome() { if(!isSorted) sort(); return chromosomes[0]; } } static Random random; static ArrayList<Generation> generations; static ArrayList<Integer> fitnessHistory;
 static Chromosome crossover(Chromosome first, Chromosome second) { int crossoverPoint = random.nextInt(first.genes.length); Chromosome child = new Chromosome(); System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint); System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint, second.genes.length - crossoverPoint);
 if(random.nextInt(1000) == 871) { int pos = random.nextInt(child.genes.length); if(child.genes[pos] == 0) child.genes[pos] = 1; else child.genes[pos] = 0;
 } return child; }

 static boolean isLastGenerationUnchanged()
 { int tmp = fitnessHistory.get(fitnessHistory.size() - 1); if(tmp==1000) return true; if(fitnessHistory.size() <= 100) return false; for(int i = 0; i < 100; i++) if(fitnessHistory.get(fitnessHistory.size()-i-1) != tmp) return false; return true;
 } public static void main(String[] args) throws InterruptedException { random = new Random(System.currentTimeMillis()); fitnessHistory = new ArrayList<>(); generations = new ArrayList<>(); generations.add(new Generation()); generations.get(0).sort(); fitnessHistory.add(generations.get(0).getAverageFitness()); System.out.println("Generation: 0; Fitness: " + generations.get(0).getAverageFitness() + "; Best chromosome: " + generations.get(0).getBestChromosome().getFitness()); for(int i = 1; ; i++)
 { Generation newGeneration = new Generation(); for(int j = 0; j < newGeneration.chromosomes.length; j++) { Chromosome[] random2 = generations.get(generations.size()-1).get2RandomChromosomes(); newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);
 } newGeneration.sort(); generations.add(newGeneration); generations.remove(0); fitnessHistory.add(newGeneration.getAverageFitness()); System.out.println(i + " " + newGeneration.getAverageFitness() + " " + newGeneration.getBestChromosome().getFitness()); if(isLastGenerationUnchanged()) break;
 } Thread.sleep(1000); } }

Result
1) The best chromosome in the 1st generation - 542;
 The best chromosome in the 36000th generation - 982;
 The best chromosome in the last (73386th) generation - 1000;

2)

