1 -llya Ba

Conditions

. Repeat fro

O~NO O WN P

(1) Desplay t
(2) Desplay t

Source code

using System
using System
using System
using System
using System

namespace Wi
{
class GA
{
List
publ
publi
publi
doub
doub
publ
{

ool

~

bich

. Create 100 random binary-chromosomes each with 1000 genes.

. Fitness is the number of \1" in one chromosome the more the better.

. Select 2 chromosomes at random from the better half of the population.
. Create a child chromosome by a onr-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

m 2. to 5. 100 times and create the next generation.

. Repeat 6. until the fitness value does not change any more.
. Show the result:

he best chromosome in the 1st, an intermediate & final generation.
he best and average fitness vs. generation.

.Collections.Generic;
.Ling;

.Text;
.Threading.Tasks;

ndowsFormsApplicationl

<List<Boolean>> ArrayBinaryChrome;

ic List<double> genFit;

c List<double> BestInGen;
c List<double> AverGen;
le theBestFirst;

le theBestLast;

ic GA()

AverGen = new List<double>();
BestInGen = new List<double>();
genFit = new List<double>();
Random random = new Random() ;
ArrayBinaryChrome = new List<List<bool>>();
for(int 1=0;1<100;1i++)
{

List<Boolean> tempBinChrom= new List<bool>();

for (int 3=0;3<1000;j++)

{

if (random.Next (2) == 0)
tempBinChrom.Add (false);
else
tempBinChrom.Add (true) ;

}

ArrayBinaryChrome.Add (tempBinChrom) ;
}
genFit.Add (getFitGen (ArrayBinaryChrome)) ;
theBestFirst = getTheBestFitnessGen (ArrayBinaryChrome) ;
int k = 0;
do
{

List<List<Boolean>> tempGen = getNextGen (ArrayBinaryChrome) ;

genFit.Add (getFitGen (tempGen)) ;

BestInGen.Add (getTheBestFitnessGen (tempGen)) ;

ArrayBinaryChrome = tempGen;

k++;

}
while (!isReady(genFit));
theBestLast = getTheBestFitnessGen (ArrayBinaryChrome) ;

ean isReady (List<double> fitness)

if (fitness.Count < 100)

return false;
else
{

for(int i=fitness.Count-100;i<fitness.Count;i++)

{

if ((int)fitness[fitness.Count - 100] != (int)fitness[i])
return false;

return true;
}
}
List<List<Boolean>> getNextGen (List<List<Boolean>> ArrayBinaryChrome)
{
//Getting fitness
List<int> fitnessGen = new List<int>();
for(int i=0;i<ArrayBinaryChrome.Count;i++)
{
fitnessGen.Add (getFitness (ArrayBinaryChrome[i])) ;
}
//Sorting by fitness
for(int i=0;i<fitnessGen.Count;i++)
{
for (int j=fitnessGen.Count-1;73>i;j--)
{
if(fitnessGen[j]<fitnessGen[j-11)
{
int temp = fitnessGen[j];
fitnessGen[j] = fitnessGen[j - 11];
fitnessGen[]j - 1] = temp;
List<Boolean> tempGen = ArrayBinaryChrome[]j];
ArrayBinaryChrome[j] = ArrayBinaryChrome[] - 1];
ArrayBinaryChrome[] - 1] = tempGen;

}
}
//Getting children
Random random = new Random() ;
List<List<Boolean>> newGen = new List<List<bool>>();
for (int i=0;1<50;i++)
{
int numberFather= random.Next (50, 100);
int numberMother = random.Next (50, 100);
int poinCrossover = random.Next (0,1000) ;
List<Boolean> firstChild = new List<bool>();
for (int j = 0; j < poinCrossover; j++)
{
firstChild.Add (ArrayBinaryChrome [numberFather] [j]);

for (int j = poinCrossover; j < 1000; j++)

firstChild.Add (ArrayBinaryChrome [numberMother] [j]);
}
newGen.Add (firstChild) ;
List<Boolean> seconChild = new List<bool>():;
for (int 3 = 0; j < poinCrossover; Jj++)
{
seconChild.Add (ArrayBinaryChrome [numberMother] [j]);
}

for (int j = poinCrossover; j < 1000; j++)

seconChild.Add (ArrayBinaryChrome [numberFather] [j]);
}
newGen.Add (seconChild) ;
//Mutation
for (int j=0;j<newGen.Count; j++)
{
int prob = random.Next (0, 1000);
if (prob==777)
{

int number = random.Next (1000);
if (newGen[j] [number])
newGen[j] [number] = false;
else
newGen[j] [number] = true;

}
}
return newGen;
}
int getFitness(List<Boolean> binChrom)
{
int fitness = 0;
for(int i=0;i<binChrom.Count; i++)
{
if (binChrom[i])
fitness++;
}
return fitness;
}
double getFitGen (List<List<Boolean>>gen)
{

int sum = 0;

}

for (int i=0;i<gen.Count;i++)
{

sum += getFitness(gen[i]);
}

return (double)sum / 100;

double getTheBestFitnessGen (List<List<Boolean>> gen)

{

int max = 0;

for (int 1 = 0; i < gen.Count; i++)

{
int fit=getFitness(gen[i]);

if (fit > max)
max = fit;
}
return max;
}
}
}
Result
e - .
14004+ ¥ At‘a;:;t Fitnew
BQIT'!._'L Fitnen
12004 haximormeSE2
1000+
932
8004
600
00t
200+
X
]] | | I —
1000 2000 3000 4000 5000
-2001

First the best=533
Last the best=982

