
1 -Ilya Babich

Conditions
1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of \1" in one chromosome the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a onr-point-crossover.

5. Give the child a mutation with a probability of 1/1000 = 0.001.

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.

(2) Desplay the best and average fitness vs. generation.

Source code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace WindowsFormsApplication1

{

 class GA

 {

 List<List<Boolean>> ArrayBinaryChrome;

 public List<double> genFit;

 public List<double> BestInGen;

 public List<double> AverGen;

 double theBestFirst;

 double theBestLast;

 public GA()

 {

 AverGen = new List<double>();

 BestInGen = new List<double>();

 genFit = new List<double>();

 Random random = new Random();

 ArrayBinaryChrome = new List<List<bool>>();

 for(int i=0;i<100;i++)

 {

 List<Boolean> tempBinChrom= new List<bool>();

 for (int j=0;j<1000;j++)

 {

 if (random.Next(2) == 0)

 tempBinChrom.Add(false);

 else

 tempBinChrom.Add(true);

 }

 ArrayBinaryChrome.Add(tempBinChrom);

 }

 genFit.Add(getFitGen(ArrayBinaryChrome));

 theBestFirst = getTheBestFitnessGen(ArrayBinaryChrome);

 int k = 0;

 do

 {

 List<List<Boolean>> tempGen = getNextGen(ArrayBinaryChrome);

 genFit.Add(getFitGen(tempGen));

 BestInGen.Add(getTheBestFitnessGen(tempGen));

 ArrayBinaryChrome = tempGen;

 k++;

 }

 while (!isReady(genFit));

 theBestLast = getTheBestFitnessGen(ArrayBinaryChrome);

 }

 Boolean isReady(List<double> fitness)

 {

 if (fitness.Count < 100)

 return false;

 else

 {

 for(int i=fitness.Count-100;i<fitness.Count;i++)

 {

 if ((int)fitness[fitness.Count - 100] != (int)fitness[i])

 return false;

 }

 return true;

 }

 }

 List<List<Boolean>> getNextGen(List<List<Boolean>> ArrayBinaryChrome)

 {

 //Getting fitness

 List<int> fitnessGen = new List<int>();

 for(int i=0;i<ArrayBinaryChrome.Count;i++)

 {

 fitnessGen.Add(getFitness(ArrayBinaryChrome[i]));

 }

 //Sorting by fitness

 for(int i=0;i<fitnessGen.Count;i++)

 {

 for(int j=fitnessGen.Count-1;j>i;j--)

 {

 if(fitnessGen[j]<fitnessGen[j-1])

 {

 int temp = fitnessGen[j];

 fitnessGen[j] = fitnessGen[j - 1];

 fitnessGen[j - 1] = temp;

 List<Boolean> tempGen = ArrayBinaryChrome[j];

 ArrayBinaryChrome[j] = ArrayBinaryChrome[j - 1];

 ArrayBinaryChrome[j - 1] = tempGen;

 }

 }

 }

 //Getting children

 Random random = new Random();

 List<List<Boolean>> newGen = new List<List<bool>>();

 for (int i=0;i<50;i++)

 {

 int numberFather= random.Next(50, 100);

 int numberMother = random.Next(50, 100);

 int poinCrossover = random.Next(0,1000);

 List<Boolean> firstChild = new List<bool>();

 for (int j = 0; j < poinCrossover; j++)

 {

 firstChild.Add(ArrayBinaryChrome[numberFather][j]);

 }

 for (int j = poinCrossover; j < 1000; j++)

 {

 firstChild.Add(ArrayBinaryChrome[numberMother][j]);

 }

 newGen.Add(firstChild);

 List<Boolean> seconChild = new List<bool>();

 for (int j = 0; j < poinCrossover; j++)

 {

 seconChild.Add(ArrayBinaryChrome[numberMother][j]);

 }

 for (int j = poinCrossover; j < 1000; j++)

 {

 seconChild.Add(ArrayBinaryChrome[numberFather][j]);

 }

 newGen.Add(seconChild);

 //Mutation

 for(int j=0;j<newGen.Count;j++)

 {

 int prob = random.Next(0, 1000);

 if(prob==777)

 {

 int number = random.Next(1000);

 if (newGen[j][number])

 newGen[j][number] = false;

 else

 newGen[j][number] = true;

 }

 }

 }

 return newGen;

 }

 int getFitness(List<Boolean> binChrom)

 {

 int fitness = 0;

 for(int i=0;i<binChrom.Count;i++)

 {

 if (binChrom[i])

 fitness++;

 }

 return fitness;

 }

 double getFitGen(List<List<Boolean>>gen)

 {

 int sum = 0;

 for(int i=0;i<gen.Count;i++)

 {

 sum += getFitness(gen[i]);

 }

 return (double)sum / 100;

 }

 double getTheBestFitnessGen(List<List<Boolean>> gen)

 {

 int max = 0;

 for (int i = 0; i < gen.Count; i++)

 {

 int fit=getFitness(gen[i]);

 if (fit > max)

 max = fit;

 }

 return max;

 }

 }

}

Result

First the best=533

Last the best=982

