Task 1 All One Problem (12.02.2016)

Student —Artyom Yudenkov
We have the initial population with 100 binary chromosomes that are with 1000 genes. The fitness under the number of “1” is good, “0” - bad. We need to

get gene which consists of all “1”. For these Achivement we use such algorithm :

1. Create 100 binary-chromosomes at random where each chromosome contains 1000 gens.
2. Select 2 chromosomes with Roulette method.

3. With one-point-crossover create new generation of children.

4, Repeat steps 2-3, until we get new population.

5. Repeat 4. until the fitness value does not change any more.

ALL ONES PROBLEM
800

700
600 7\,/‘/&
500

400

Best

300 Average

200

100

0 20 40 60 80 100 120

Ne of

535 | 0,010662 0 528 | 0,010572 0
iter. FITNESS | CHANCE | CHOICE

532 | 0,010652 0 528 | 0,010572 0

1 537 | 0,010752 2




526

0,010532

526

0,010532

505

0,010111

524

0,010492

504

0,010091

494

0,009891

523

0,010472

504

0,010091

493

0,009866

522

0,010452

503

0,010066

493

0,009866

520

0,010412

503

0,010066

493

0,009866

520

0,010412

503

0,010066

493

0,009866

519

0,010392

503

0,010066

492

0,009851

519

0,010392

502

0,010051

492

0,009851

517

0,010352

502

0,010051

492

0,009851

517

0,010352

502

0,010051

492

0,009851

517

0,010352

501

0,010031

491

0,009831

517

0,010352

500

0,010011

490

0,009811

515

0,010312

500

0,010011

490

0,009811

515

0,010312

500

0,010011

490

0,009811

513

0,010272

500

0,010011

489

0,009791

513

0,010272

500

0,010011

489

0,009791

513

0,010272

499

0,009991

489

0,009791

513

0,010272

499

0,009991

487

0,009751

512

0,010251

499

0,009991

487

0,009751

511

0,010231

498

0,009966

484

0,009691

511

0,010231

498

0,009966

483

0,009666

511

0,010231

497

0,009951

482

0,009651

510

0,010211

496

0,009931

481

0,009631

509

0,010191

496

0,009931

480

0,009611

509

0,010191

496

0,009931

480

0,009611

509

0,010191

495

0,009911

479

0,009591

508

0,010166

495

0,009911

479

0,009591

507

0,010151

N (NN P kO O O [k |k N |k [k (N O |k |k I O W | O |0 |N |k (N (P |k N |-

494

0,009891

479

0,009591

494

0,009891

O |k IN |IN |k [N O |N N [k O (NN [P |INMN N [P (kOO |0 |0 |0 |0 |0 |0 |k (kN

478

0,009566

o |k |k |k O |k O |k |k O O (N [k |IN |, IN [k (N |k N |k |O (N[N NN |INMN|O




478 | 0,009566 0
477 | 0,009551 0
476 | 0,009531 0
470 | 0,009411 1
470 | 0,009411 1
468 | 0,009365 1
463 | 0,009265 1
459 | 0,00919 1
448 | 0,008965 1

sum 0,999865 100

25 641 | 0,0101 1
640 0,01 3
640 0,01 1
640 0,01 1
640 0,01 0
640 0,01 0
640 0,01 0
640 0,01 0
640 0,01 0
640 0,01 0
640 0,01 2
640 0,01 1
640 0,01 1
639 0,01 2
639 0,01 1
639 0,01 0
639 0,01 1

639 0,01 1
639 0,01 1
639 0,01 1
639 0,01 0
639 0,01 0
639 0,01 2
639 0,01 1
639 0,01 2
638 0,01 1
638 0,01 1
638 0,01 1
638 0,01 2
638 0,01 2
638 0,01 1
638 0,01 0
638 0,01 1
638 0,01 0
638 0,01 0
638 0,01 1
638 0,01 1
638 0,01 2
638 0,01 1
638 0,01 1
638 0,01 2
638 0,01 2
638 0,01 3
638 0,01 0
638 0,01 0
638 0,01 0

638 0,01 0
638 0,01 0
638 0,01 0
638 0,01 1
638 0,01 1
638 0,01 1
638 0,01 0
638 0,01 1
637 0,01 2
637 0,01 2
637 0,01 1
637 0,01 2
637 0,01 1
637 0,01 1
637 0,01 1
637 0,01 0
637 0,01 2
636 0,01 1
636 0,01 1
636 0,01 2
636 0,01 2
636 0,01 1
636 0,01 1
636 0,01 1
636 0,01 0
636 0,01 2
636 0,01 0
636 0,01 0
636 0,01 0




636 0,01 2
636 0,01 0
636 0,01 0
636 0,01 0
636 0,01 2
636 0,01 1
636 0,01 1
636 0,01 1
636 0,01 1
636 0,01 1
636 0,01 2
636 0,01 2
636 0,01 1
636 0,01 2
636 0,01 1
635 0,01 2
635 0,01 1
635 0,01 2
635 0,01 1
635 0,01 2
635 0,01 0
635 0,01 1
635 0,01 1
635 0,01 1
635 0,01 1
sum 1 100
50 662 | 0,010015 1
662 | 0,010015 0
662 | 0,010015 0
662 | 0,010015 2

662 | 0,010015 1
662 | 0,010015 3
662 | 0,010015 1
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 1
661 0,01 2
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 2
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 2
661 0,01 3
661 0,01 1
661 0,01 3
661 0,01 2
661 0,01 0
661 0,01 2
661 0,01 1
661 0,01 2
661 0,01 2
661 0,01 2
661 0,01 2
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 1
661 0,01 0
661 0,01 0

661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 0
661 0,01 0
661 0,01 0
661 0,01 1
661 0,01 0
661 0,01 0
661 0,01 0
661 0,01 2
661 0,01 2
661 0,01 0
661 0,01 2
661 0,01 1
661 0,01 1
661 0,01 2
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 3
661 0,01 0
661 0,01 1
661 0,01 1
661 0,01 2
661 0,01 1
661 0,01 0
661 0,01 0
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 2
661 0,01 2
661 0,01 2
661 0,01 1
661 0,01 2




664

0,010009

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

664

0,010009

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 1
661 0,01 0
661 0,01 0
661 0,01 1
661 0,01 1
661 0,01 2
661 0,01 0
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 1
661 0,01 1
661 0,01 1
661 0,01 0
661 0,01 0
660 | 0,009984 2
660 | 0,009984 0
660 | 0,009984 1
660 | 0,009984 1
sum 1 100
75 664 | 0,010009 1
664 | 0,010009 1
664 | 0,010009 1
664 | 0,010009 1
664 | 0,010009 1
664 | 0,010009 1
664 | 0,010009 2
664 | 0,010009 2
664 | 0,010009 2
664 | 0,010009 3
664 | 0,010009 0

663

0,009994

663

0,009994

663

0,009994

N OOk, |IOIOCOININIFPINININIPIN|PR|IOOCIOIN|ORINININPR|WO|O(N|IMN/O|O|O|O|O

663

0,009994

663

0,009994

OlRr|IN|R|RLR|ILRIVWIVNO|R|[R|R|R|lOoO|lO|lO|O|IMV|O|R|R[R|RLR|[V|O|R|O|R|O|O|FR|R|MV] OO




663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

663

0,009994

N R PPN FPINOIO|IFLRININ|IFPO|F |- |O

sum

1

100

100

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

664

0,01

R R (Rr|R[O|RIN|IVN|R|lw|lO|lO|O|ON|R|R |k

664 0,01 1
664 0,01 1
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 1
664 0,01 2
664 0,01 2
664 0,01 2
664 0,01 3
664 0,01 1
664 0,01 1
664 0,01 2
664 0,01 0
664 0,01 0
664 0,01 2
664 0,01 2
664 0,01 0
664 0,01 1
664 0,01 1
664 0,01 0
664 0,01 2
664 0,01 0
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 2
664 0,01 3
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 2

664 0,01 2
664 0,01 0
664 0,01 0
664 0,01 2
664 0,01 2
664 0,01 0
664 0,01 3
664 0,01 2
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 1
664 0,01 1
664 0,01 2
664 0,01 2
664 0,01 3
664 0,01 1
664 0,01 1
664 0,01 1
664 0,01 2
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 0
664 0,01 1
664 0,01 1
664 0,01 1




664 0,01 1
664 0,01 0
664 0,01 2
664 0,01 1

664 0,01 2
664 0,01 2
664 0,01 1
664 0,01 1

664 0,01 1
664 0,01 1
sum 1 100

Code:
<html>
<body>
<br>
<br>

<script language="JavaScript">

(0=>{

"use strict";

const populationCount = 100,

genSize = 1000,
itterationsCount = 100;

let generation = RouletteGenerateGeneration(populationCount, genSize),

itterationNum = 0;

for (let i = 0; ++i < itterationsCount;) {

generation = generation.sort((genl, gen2) => {
return calcOnes(gen2) - calcOnes(genl);

H

logGeneration(generation);

generation = nextGeneration(generation);

}

logGeneration(generation);

return;

function RouletteGenerateGeneration(count, size) {
let generation = [], chance=0;
for (let i =-1; ++i < count;) {
let gen = [],forevery (chanse) {insert onlyOnesCh;}

for (let j = -1; ++j < size;) {

gen.push(getRandomBinary());
forevery(chanse) {where top value(chanse) insert parentsOne;}
for (int i=0; i<sets.size();i++){

sum+= sets[i].eval();

¥




rand = ((rand() / RAND_MAX) * sum);
sum=0;

for (int i =0; i<sets.size(); i++){

sum+= sets[i].eval();

if(rand<sum){ break;

1

}

generation.push(gen);

}

return generation;

}

function calcOnes(gen) {
let count = 0;

for (let i = -1; ++i < gen.length;) if (gen[i]) count++;

return count;

¥

function nextGeneration(parentGeneration) {

let repeatCount = populationCount / 2,

newGeneration = [];

for (let i = 0; ++i < populationCount;) {

let firstindex = getRandomInt(0, populationCount),

secondIndex = getRandomInt(0, populationCount);
document.write(firstindex + " " + secondIndex + " | ");

newGeneration.push(...crossover(parentGeneration[firstindex],

parentGeneration[secondindex]));

}

return newGeneration;

}

function crossover(firstParent, secondParent) {

let crossindex = getRandomint(1, firstParent.length);

let firstPartFirst = firstParent.slice(0, crossindex),
secondPartFirst = firstParent.slice(crossIndex, firstParent.length),
firstPartSecond = secondParent.slice(0, crossindex),
secondPartSecond = secondParent.slice(crossindex, secondParent.length);
return [firstPartFirst.concat(secondPartSecond),
firstPartSecond.concat(secondPartFirst)];

b

function getRandomBinary(min, max) {

return Math.round(Math.random());

}

function getRandomInt(min, max) {



return Math.floor(Math.random() * (max - min)) + min;
}
function bestCh (generation) {
let best = calcOnes(generation[0]); ;
for (leti=1; i < generation.length; i++) {
if (calcOnes(generation[i])>best) best = calcOnes(generation[i]);
¥

return best;

¥

function logGeneration(generation) {

let average = 0;

let allsum=0;

let onlyOnes=0;

let onlyOnesCh=0;

for (leti = 0; i < generation.length; i++) allsum +=

calcOnes(generation[i]);
for (leti = 0; i < generation.length; i++)
{onlyOnes=calcOnes(generation[i]);
onlyOnesCh=onlyOnes/allsum;
document.write(onlyOnes+"|"+ onlyOnesCh + '<br>");}

average = Math.floor(allsum / generation.length);
document.write("Average "+average + '<br>");
document.write("Best" + bestCh(generation)+'<br>");

¥
1O;

</script>
<br>
</body>
</html>



