Condition. We have 100 chromosomes which include 1000 gens. There are gens of two
kinds: 0 or 1, where 1 - is better than 0. Genes are (roulette-wheel selection)
determined. Then we choose the best chromosomes use sorting them by number of 1.
50 best chromosomes we cross our between each other until there appear a chromosome
with all 1.

Cod Programs:

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <math.h>
using namespace std;

typedef vector<int> Chromosome;
typedef vector<Chromosome> Population;

Population generation[100][1000];
int good[50][1000];

int childes[50][1000];

int childCount = 0;

int checkCount = 0;

int prev = 9;

int _tmain(int argc, _TCHAR* argv[])
{
srand(time(NULL));
createGenerate();
while (true) {
int max = rowCount(generation[0]);
if (prev==max)
checkCount++;
else
checkCount = 0;
prev = max;
cout <<max + " ";
cout << average();
if (checkCount > 25) {

return;
setGood();
childCount = 0;

for (int i = @; i < 25; i++) {
createChildes(good[rand() % 50], good[rand() % 50]);
}

createNewGeneration();

}

return 0;

bool operator==(const Chromosome& chrl, const Chromosome& chr2) {
for (auto i = @; i < chril.size(); i++) {
if (chri[i] != chr2[i]) return false;
}

return true;

void createGenerate()

{
int tmp = rand() % 1000;
double vall = (double)tmp / 1000;
double val2 (double)tmp / 1000;
while (vall == val2)
{

tmp = rand() % 1000;
val2 = (double)tmp / 1000;
}

double summProb = 0.0;

int parentl, parent2;

for (int i = @; i < Prob.size(); i++)
{

summProb += Prob[i];

if (summProb >= vall)

{

parentl = i;
break;

1}
summProb = 0.0;
for (int i = @; i < Prob.size(); i++)
{

summProb += Prob[i];

if (summProb >= val2)

{

parent2 = i;
break;

3}

Chromosome childl = population[parentl];
Chromosome child2 = population[parent2];
int cut = rand() % 1000;
for (int i = cut; i < 1000; i++)
{
child1[i]
child2[1i]

population[parent2][i];
population[parentl][i];

}
result.push_back(childl);

result.push_back(child2);

int rowCount(int generation[]) {
int count = ©;
for (int i = @; i<1000; i++) {
count += generation[i];

}

return count;

void setGood() {
for (int i = 0; i < 50; i++) {
for (int j = 0; j < 50; j++) {
good[i][]j] = generation[i][]];
}}

}

void createChildes(int parentl[], int parent2[]) {

int del = rand() % 1000;

int childl [1ee0];

int child2 [1ee0];

for (int i = @; i<1000; i++) {
if (i <= del) childes[childCount][i] = parentl[i];
else childes[childCount][i] = parent2[i];

} childCount++;

for (int i = 0; i<1000; i++) {
if (i <= del) childes[childCount][i] = parent2[i];
else childes[childCount][i] = parentl[i];

}childCount++;

void createNewGeneration() {
for (int i = @; i<100; i++) {
for (int j = 0; j < 1000; j++) {
if (i < 50) generation[i][j] = good[i][j];
else generation[i][j] = childes[i - 50][]j];

}

int average() {
int s = 0;
for (int i = @; i<100; i++) {
s += rowCount(generation[i]);}
int average = s / 100;
return average;

After compliting program and analyze result, we can see, that alghoritm create
chromosomes more 60% good gens. Average values almost equals with max value,
and have less steps by iterations.

Desplay the best-fithness generation and average-fitness generation.

X - generation
y — fitness

HazsaHuWe guarpammbi

550
p— T
500
550
500
450
400
TRARFRSRAGER R8RSR SRR R A

— A e Best

As we have the best parents (with each iteratoin the better) we get better children and from after 200
iterations the maximum fitness is not increased.

iteration

Tables result on (0,75,150 and last iteration): fitness generation and value for each
fitness value.

0 75 150 219
465 567 605 606
469 569 605 607
470 571 605 607
470 572 606 607
471 573 606 607
472 574 606 608
473 574 606 608
473 574 606 608
476 575 606 608

477
480
480
480
481
482
483
483
484
485
486
486
487
487
488
488
488
488

575
575
576
576
576
577
577
577
577
577
577
578
578
578
578
578
578
578

606
606
607
607
607
607
608
608
608
608
608
609
609
609
609
609
609
609

608
608
609
609
609
609
609
609
609
609
609
609
609
609
609
609
609
610

489 | 0,0098 578 | 0,0099 609 0,01 610 | O
490 | 0,0098 578 | 0,0099 609 0,01 610 | O
491 | 0,0098 578 | 0,0099 609 0,01 610 | O
491 | 0,0098 579 | 0,0099 609 0,01 610 | O
491 | 0,0098 579 | 0,0099 609 0,01 610 | O
491 | 0,0098 579 | 0,0099 609 0,01 610 | O
491 | 0,0098 579 | 0,0099 609 0,01 610 | 0
492 | 0,0099 580 0,01 609 0,01 610 | O
492 | 0,0099 580 0,01 609 0,01 610 | O
493 | 0,0099 580 0,01 610 0,01 610 | O
493 | 0,0099 581 0,01 610 0,01 610 | O
494 | 0,0099 581 0,01 610 0,01 610 | O
495 | 0,0099 581 0,01 610 0,01 610 | O
496 | 0,0099 581 0,01 610 0,01 610 | O
496 | 0,0099 581 0,01 610 0,01 610 | O
496 | 0,0099 582 0,01 610 0,01 610 | O
496 | 0,0099 582 0,01 610 0,01 610 | O
497 0,01 582 0,01 610 0,01 610 | O
497 0,01 582 0,01 610 0,01 610 | O
497 0,01 583 0,01 610 0,01 610 | O
498 0,01 583 0,01 610 0,01 611 | 0
498 0,01 583 0,01 610 0,01 611 | 0
500 0,01 583 0,01 610 0,01 611 | 0
500 0,01 583 0,01 611 0,01 611 | 0
501 0,01 583 0,01 611 0,01 611 | 0
501 0,01 583 0,01 611 0,01 611 | 0
501 0,01 583 0,01 611 0,01 611 | 0
501 0,01 583 0,01 611 0,01 611 | 0
502 | 0,0101 584 0,01 611 0,01 611 | 0
502 | 0,0101 584 0,01 611 0,01 611 | 0
502 | 0,0101 584 0,01 611 0,01 611 | 0
502 | 0,0101 584 0,01 611 0,01 611 | 0
502 | 0,0101 584 0,01 611 0,01 611 | 0
503 | 0,0101 585 0,01 611 0,01 612 | 0
503 | 0,0101 585 0,01 612 0,01 612 | 0
504 | 0,0101 585 0,01 612 0,01 612 | 0
504 | 0,0101 585 0,01 612 0,01 612 | 0
504 | 0,0101 585 0,01 612 0,01 612 | 0
505 | 0,0101 585 0,01 612 0,01 612 | 0
505 | 0,0101 586 | 0,0101 612 0,01 612 | 0
506 | 0,0101 586 | 0,0101 612 0,01 613 | 0
508 | 0,0102 586 | 0,0101 612 0,01 613 | 0
508 | 0,0102 587 | 0,0101 612 0,01 613 | 0

508 | 0,0102 587 | 0,0101 613 0,01 613 | 0
509 | 0,0102 587 | 0,0101 613 0,01 613 | 0
509 | 0,0102 587 | 0,0101 613 0,01 613 | 0
509 | 0,0102 588 | 0,0101 613 0,01 613 | 0
510 | 0,0102 588 | 0,0101 613 0,01 613 | 0
510 | 0,0102 588 | 0,0101 613 0,01 613 | 0
511 | 0,0102 589 | 0,0101 613 0,01 613 | 0
513 | 0,0103 589 | 0,0101 613 0,01 613 | 0
513 | 0,0103 589 | 0,0101 613 0,01 613 | 0
514 | 0,0103 589 | 0,0101 614 | 0,0101 614 | 0
515 | 0,0103 589 | 0,0101 614 | 0,0101 614 | 0
516 | 0,0103 589 | 0,0101 614 | 0,0101 614 | 0
516 | 0,0103 589 | 0,0101 614 | 0,0101 614 | 0
516 | 0,0103 589 | 0,0101 614 | 0,0101 614 | 0
517 | 0,0104 589 | 0,0101 614 | 0,0101 614 | 0
517 | 0,0104 589 | 0,0101 614 | 0,0101 614 | 0
517 | 0,0104 589 | 0,0101 614 | 0,0101 614 | 0
517 | 0,0104 589 | 0,0101 614 | 0,0101 614 | 0
519 | 0,0104 590 | 0,0101 614 | 0,0101 614 | 0
519 | 0,0104 590 | 0,0101 614 | 0,0101 614 | 0
519 | 0,0104 590 | 0,0101 615 | 0,0101 615 | 0
520 | 0,0104 591 | 0,0101 615 | 0,0101 615 [O
522 | 0,0105 591 | 0,0101 615 | 0,0101 615 | 0
523 | 0,0105 592 | 0,0102 615 | 0,0101 616 | 0
526 | 0,0105 593 | 0,0102 615 | 0,0101 616 | 0
529 | 0,0106 593 | 0,0102 616 | 0,0101 616 | O
530 | 0,0106 594 | 0,0102 616 | 0,0101 617 | 0
531 | 0,0106 595 | 0,0102 616 | 0,0101 617 | 0
536 | 0,0107 596 | 0,0102 616 | 0,0101 617 | 0
541 | 0,0108 601 | 0,0103 616 | 0,0101 618 | 0

