
Condition. We have 100 chromosomes which include 1000 gens. There are gens of two

kinds: 0 or 1, where 1 - is better than 0. Genes are (roulette-wheel selection)

determined. Then we choose the best chromosomes use sorting them by number of 1.

50 best chromosomes we cross our between each other until there appear a chromosome

with all 1.

Cod Programs:

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <math.h>
using namespace std;

typedef vector<int> Chromosome;
typedef vector<Chromosome> Population;

Population generation[100][1000];
int good[50][1000];
int childes[50][1000];
int childCount = 0;
int checkCount = 0;
int prev = 0;

int _tmain(int argc, _TCHAR* argv[])
{
 srand(time(NULL));
 createGenerate();
 while (true) {
 int max = rowCount(generation[0]);
 if (prev==max)
 checkCount++;
 else
 checkCount = 0;
 prev = max;
 cout <<max + " ";
 cout << average();
 if (checkCount > 25) {
 return;
 }
 setGood();

 childCount = 0;
 for (int i = 0; i < 25; i++) {
 createChildes(good[rand() % 50], good[rand() % 50]);
 }
 createNewGeneration();
 }

 return 0;

}

bool operator==(const Chromosome& chr1, const Chromosome& chr2) {
 for (auto i = 0; i < chr1.size(); i++) {
 if (chr1[i] != chr2[i]) return false;
 }
 return true;
}

 void createGenerate()
 {
 int tmp = rand() % 1000;
 double val1 = (double)tmp / 1000;
 double val2 = (double)tmp / 1000;
 while (val1 == val2)
 {
 tmp = rand() % 1000;
 val2 = (double)tmp / 1000;
 }

 double summProb = 0.0;
 int parent1, parent2;
 for (int i = 0; i < Prob.size(); i++)
 {
 summProb += Prob[i];
 if (summProb >= val1)
 {
 parent1 = i;
 break;
 } }
 summProb = 0.0;
 for (int i = 0; i < Prob.size(); i++)
 {
 summProb += Prob[i];
 if (summProb >= val2)
 {
 parent2 = i;
 break;
 }}

 Chromosome child1 = population[parent1];
 Chromosome child2 = population[parent2];
 int cut = rand() % 1000;
 for (int i = cut; i < 1000; i++)
 {
 child1[i] = population[parent2][i];
 child2[i] = population[parent1][i];
 }
 result.push_back(child1);
 result.push_back(child2);

 }

 int rowCount(int generation[]) {
 int count = 0;
 for (int i = 0; i<1000; i++) {
 count += generation[i];
 }
 return count;
 }

 void setGood() {
 for (int i = 0; i < 50; i++) {
 for (int j = 0; j < 50; j++) {
 good[i][j] = generation[i][j];
 } }
 }

 void createChildes(int parent1[], int parent2[]) {

 int del = rand() % 1000;
 int child1 [1000];
 int child2 [1000];
 for (int i = 0; i<1000; i++) {
 if (i <= del) childes[childCount][i] = parent1[i];
 else childes[childCount][i] = parent2[i];
 } childCount++;
 for (int i = 0; i<1000; i++) {
 if (i <= del) childes[childCount][i] = parent2[i];
 else childes[childCount][i] = parent1[i];
 }childCount++;

 }

 void createNewGeneration() {
 for (int i = 0; i<100; i++) {
 for (int j = 0; j < 1000; j++) {
 if (i < 50) generation[i][j] = good[i][j];
 else generation[i][j] = childes[i - 50][j];
 }
 }
 }

 int average() {
 int s = 0;
 for (int i = 0; i<100; i++) {
 s += rowCount(generation[i]);}
 int average = s / 100;
 return average;
 }

After compliting program and analyze result, we can see, that alghoritm create

chromosomes more 60% good gens. Average values almost equals with max value,

and have less steps by iterations.

Desplay the best-fitness generation and average-fitness generation.

x - generation

 y – fitness

As we have the best parents (with each iteratoin the better) we get better children and from after 200

iterations the maximum fitness is not increased.

iteration Average Best

1 497 533

2 499 541

3 500 532

4 501 530

5 504 535

6 505 540

7 503 533

8 504 529

9 505 541

10 506 551

11 508 546

12 510 550

13 511 550

14 513 544

15 515 552

16 515 551

17 515 545

18 515 548

19 518 549

20 519 550

21 519 561

22 518 544

23 520 547

24 519 544

25 520 545

26 522 548

27 523 551

28 523 550

29 523 552

30 525 552

31 526 557

32 526 552

33 529 559

34 531 559

35 533 564

36 535 566

37 536 567

38 540 574

39 541 574

40 544 577

41 547 577

42 548 577

43 548 572

44 549 577

45 547 579

46 549 579

47 549 579

48 550 575

49 549 575

50 550 573

51 549 573

52 551 576

53 552 578

54 552 576

55 554 576

56 555 576

57 554 587

58 555 586

59 556 581

60 555 578

61 555 581

62 557 579

63 557 579

64 558 577

65 559 576

66 560 576

67 563 582

68 565 583

69 565 583

70 566 583

71 565 581

72 565 582

73 565 583

74 566 583

75 566 581

76 566 582

77 567 583

78 567 586

79 569 591

80 570 590

81 572 595

82 571 596

83 572 596

84 572 600

85 572 600

86 574 600

87 575 600

88 576 594

89 578 595

90 578 598

91 578 598

92 579 599

93 580 603

94 580 606

95 580 600

96 581 603

97 580 597

98 581 596

99 582 600

100 582 601

101 582 601

102 582 601

103 583 601

104 583 598

105 582 598

106 582 595

107 583 597

108 583 596

109 583 596

110 583 598

111 584 602

112 583 602

113 584 597

114 585 597

115 585 600

116 585 600

117 585 597

118 586 600

119 586 600

120 586 601

121 586 598

122 586 597

123 586 598

124 587 599

125 587 600

126 588 600

127 587 600

128 587 600

129 588 603

130 589 602

131 590 603

132 591 603

133 591 605

134 590 607

135 591 604

136 591 605

137 590 606

138 590 609

139 590 609

140 590 609

141 590 609

142 591 607

143 590 607

144 591 608

145 592 608

146 592 608

147 592 608

148 594 608

149 593 608

150 594 609

151 595 610

152 596 609

153 596 609

154 597 610

155 597 610

156 598 610

157 598 610

158 599 610

159 599 612

160 600 612

161 600 612

162 601 610

163 601 611

164 602 611

165 602 611

166 602 611

167 603 611

168 603 612

169 603 612

170 603 612

171 603 612

172 604 612

173 605 613

174 606 613

175 606 614

176 606 613

177 607 613

178 606 614

179 606 614

180 606 614

181 606 614

182 607 614

183 607 614

184 607 615

185 607 616

186 607 616

187 607 616

188 608 616

189 608 616

190 608 616

191 608 616

192 608 615

193 608 616

194 609 616

195 609 616

196 609 616

197 610 616

198 610 616

199 610 616

200 610 617

201 610 617

202 610 616

203 610 616

204 610 616

205 610 617

206 611 617

207 611 617

208 611 616

209 611 616

210 611 617

211 611 617

212 611 617

213 611 617

214 611 617

215 611 617

216 611 617

217 611 617

218 611 617

219 611 617

Tables result on (0,75,150 and last iteration): fitness generation and value for each

fitness value.
0 75 150 219

465 0,0093 567 0,0097 605 0,0099 606 0

469 0,0094 569 0,0098 605 0,0099 607 0

470 0,0094 571 0,0098 605 0,0099 607 0

470 0,0094 572 0,0098 606 0,0099 607 0

471 0,0094 573 0,0098 606 0,0099 607 0

472 0,0095 574 0,0098 606 0,0099 608 0

473 0,0095 574 0,0098 606 0,0099 608 0

473 0,0095 574 0,0098 606 0,0099 608 0

476 0,0095 575 0,0099 606 0,0099 608 0

477 0,0096 575 0,0099 606 0,0099 608 0

480 0,0096 575 0,0099 606 0,0099 608 0

480 0,0096 576 0,0099 607 0,0099 609 0

480 0,0096 576 0,0099 607 0,0099 609 0

481 0,0096 576 0,0099 607 0,0099 609 0

482 0,0097 577 0,0099 607 0,0099 609 0

483 0,0097 577 0,0099 608 0,01 609 0

483 0,0097 577 0,0099 608 0,01 609 0

484 0,0097 577 0,0099 608 0,01 609 0

485 0,0097 577 0,0099 608 0,01 609 0

486 0,0097 577 0,0099 608 0,01 609 0

486 0,0097 578 0,0099 609 0,01 609 0

487 0,0098 578 0,0099 609 0,01 609 0

487 0,0098 578 0,0099 609 0,01 609 0

488 0,0098 578 0,0099 609 0,01 609 0

488 0,0098 578 0,0099 609 0,01 609 0

488 0,0098 578 0,0099 609 0,01 609 0

488 0,0098 578 0,0099 609 0,01 610 0

489 0,0098 578 0,0099 609 0,01 610 0

490 0,0098 578 0,0099 609 0,01 610 0

491 0,0098 578 0,0099 609 0,01 610 0

491 0,0098 579 0,0099 609 0,01 610 0

491 0,0098 579 0,0099 609 0,01 610 0

491 0,0098 579 0,0099 609 0,01 610 0

491 0,0098 579 0,0099 609 0,01 610 0

492 0,0099 580 0,01 609 0,01 610 0

492 0,0099 580 0,01 609 0,01 610 0

493 0,0099 580 0,01 610 0,01 610 0

493 0,0099 581 0,01 610 0,01 610 0

494 0,0099 581 0,01 610 0,01 610 0

495 0,0099 581 0,01 610 0,01 610 0

496 0,0099 581 0,01 610 0,01 610 0

496 0,0099 581 0,01 610 0,01 610 0

496 0,0099 582 0,01 610 0,01 610 0

496 0,0099 582 0,01 610 0,01 610 0

497 0,01 582 0,01 610 0,01 610 0

497 0,01 582 0,01 610 0,01 610 0

497 0,01 583 0,01 610 0,01 610 0

498 0,01 583 0,01 610 0,01 611 0

498 0,01 583 0,01 610 0,01 611 0

500 0,01 583 0,01 610 0,01 611 0

500 0,01 583 0,01 611 0,01 611 0

501 0,01 583 0,01 611 0,01 611 0

501 0,01 583 0,01 611 0,01 611 0

501 0,01 583 0,01 611 0,01 611 0

501 0,01 583 0,01 611 0,01 611 0

502 0,0101 584 0,01 611 0,01 611 0

502 0,0101 584 0,01 611 0,01 611 0

502 0,0101 584 0,01 611 0,01 611 0

502 0,0101 584 0,01 611 0,01 611 0

502 0,0101 584 0,01 611 0,01 611 0

503 0,0101 585 0,01 611 0,01 612 0

503 0,0101 585 0,01 612 0,01 612 0

504 0,0101 585 0,01 612 0,01 612 0

504 0,0101 585 0,01 612 0,01 612 0

504 0,0101 585 0,01 612 0,01 612 0

505 0,0101 585 0,01 612 0,01 612 0

505 0,0101 586 0,0101 612 0,01 612 0

506 0,0101 586 0,0101 612 0,01 613 0

508 0,0102 586 0,0101 612 0,01 613 0

508 0,0102 587 0,0101 612 0,01 613 0

508 0,0102 587 0,0101 613 0,01 613 0

509 0,0102 587 0,0101 613 0,01 613 0

509 0,0102 587 0,0101 613 0,01 613 0

509 0,0102 588 0,0101 613 0,01 613 0

510 0,0102 588 0,0101 613 0,01 613 0

510 0,0102 588 0,0101 613 0,01 613 0

511 0,0102 589 0,0101 613 0,01 613 0

513 0,0103 589 0,0101 613 0,01 613 0

513 0,0103 589 0,0101 613 0,01 613 0

514 0,0103 589 0,0101 614 0,0101 614 0

515 0,0103 589 0,0101 614 0,0101 614 0

516 0,0103 589 0,0101 614 0,0101 614 0

516 0,0103 589 0,0101 614 0,0101 614 0

516 0,0103 589 0,0101 614 0,0101 614 0

517 0,0104 589 0,0101 614 0,0101 614 0

517 0,0104 589 0,0101 614 0,0101 614 0

517 0,0104 589 0,0101 614 0,0101 614 0

517 0,0104 589 0,0101 614 0,0101 614 0

519 0,0104 590 0,0101 614 0,0101 614 0

519 0,0104 590 0,0101 614 0,0101 614 0

519 0,0104 590 0,0101 615 0,0101 615 0

520 0,0104 591 0,0101 615 0,0101 615 0

522 0,0105 591 0,0101 615 0,0101 615 0

523 0,0105 592 0,0102 615 0,0101 616 0

526 0,0105 593 0,0102 615 0,0101 616 0

529 0,0106 593 0,0102 616 0,0101 616 0

530 0,0106 594 0,0102 616 0,0101 617 0

531 0,0106 595 0,0102 616 0,0101 617 0

536 0,0107 596 0,0102 616 0,0101 617 0

541 0,0108 601 0,0103 616 0,0101 618 0

