Task 1 All One Problem (12.02.2016)
Student —Polina Rachkovskaya
We have the initial population with 100 binary chromosomes with 1000 genes. The fitness is the number of “1” is good,

“0” 1s bad. We need to get gene which consists all “1”.
Algorithm:
Create 100 binary-chromosomes at random where each chromosome contains 1000 gens.
Select 2 chromosomes using Roulette method.
Create a child chromosome by a one-point-crossover.
Repeat steps 2-3, until we get new population.
Repeat 4. until the fitness value does not change any more.

ok owhE

Results:

All one problem
750

700 Ond

650 ; = ’ o

600 o

FITNESS

/ Best

550

e Average

500

450

400

A T N O MOV AN O I NO M OWOoO AN N W d < NO NN © O A N 0 o <IN
A A N NN OO TN NN OO ONDNNNGOGOOWWO OO

100

ITERATION

The best fitness chromosome in 1% generation is 543 and in last 100" - generation 714.
Since 76 iteration, there is no improvement of chromosomes because we achieved the best result.

Iteration | 1 25 50 75 100
Fitness | Probability Choice | Fitness | Probability Choice | Fitness | Probability Choice | Fitness | Probability Choice | Fitness Probability | Choice

1 543 | 0,010815656 3 648 | 0,010161199 2 706 | 0,010063574 2 714 | 0,01000827 3 714 0,01 0

2 533 | 0,010616472 2 647 | 0,010145518 0 705 | 0,01004932 0 714 | 0,01000827 2 714 0,01 0

3 532 | 0,010596554 3 645 | 0,010114157 3 705 | 0,01004932 3 714 | 0,01000827 2 714 0,01 0

4 532 | 0,010596554 0 644 | 0,010098476 5 705 | 0,01004932 0 714 | 0,01000827 1 714 0,01 0

5 529 | 0,010536799 3 644 | 0,010098476 2 705 | 0,01004932 3 714 | 0,01000827 2 714 0,01 0

6 527 | 0,010496962 2 644 | 0,010098476 0 705 | 0,01004932 0 714 | 0,01000827 0 714 0,01 0

7 526 | 0,010477044 1 643 | 0,010082795 1 705 | 0,01004932 2 714 | 0,01000827 0 714 0,01 0

8 525 | 0,010457126 1 643 | 0,010082795 2 704 | 0,010035066 0 714 | 0,01000827 1 714 0,01 0

9 525 | 0,010457126 1 643 | 0,010082795 3 704 | 0,010035066 0 714 | 0,01000827 0 714 0,01 0
10 525 | 0,010457126 2 643 | 0,010082795 0 704 | 0,010035066 0 714 | 0,01000827 0 714 0,01 0
11 524 | 0,010437207 0 643 | 0,010082795 3 704 | 0,010035066 4 714 | 0,01000827 0 714 0,01 0
12 523 | 0,010417289 2 643 | 0,010082795 0 704 | 0,010035066 0 714 | 0,01000827 2 714 0,01 0
13 522 | 0,010397371 0 642 | 0,010067114 3 704 | 0,010035066 2 714 | 0,01000827 0 714 0,01 0
14 522 | 0,010397371 0 642 | 0,010067114 2 704 | 0,010035066 0 714 | 0,01000827 0 714 0,01 0
15 522 | 0,010397371 2 642 | 0,010067114 0 704 | 0,010035066 3 714 | 0,01000827 2 714 0,01 0
16 520 | 0,010357534 1 642 | 0,010067114 0 703 | 0,010020811 0 714 | 0,01000827 0 714 0,01 0
17 519 | 0,010337616 3 642 | 0,010067114 2 703 | 0,010020811 0 714 | 0,01000827 1 714 0,01 0
18 517 | 0,010297779 2 641 | 0,010051433 0 703 | 0,010020811 0 714 | 0,01000827 2 714 0,01 0
19 516 | 0,010277861 1 641 | 0,010051433 3 703 | 0,010020811 0 714 | 0,01000827 1 714 0,01 0
20 515 | 0,010257942 0 641 | 0,010051433 1 703 | 0,010020811 5 714 | 0,01000827 2 714 0,01 0
21 514 | 0,010238024 1 641 | 0,010051433 0 703 | 0,010020811 0 714 | 0,01000827 2 714 0,01 0
22 514 | 0,010238024 2 641 | 0,010051433 2 703 | 0,010020811 0 714 | 0,01000827 0 714 0,01 0
23 514 | 0,010238024 2 641 | 0,010051433 0 703 | 0,010020811 2 714 | 0,01000827 1 714 0,01 0
24 513 | 0,010218106 2 640 | 0,010035752 1 703 | 0,010020811 0 714 | 0,01000827 0 714 0,01 0
25 513 | 0,010218106 3 640 | 0,010035752 1 703 | 0,010020811 0 714 | 0,01000827 2 714 0,01 0
26 512 | 0,010198187 2 640 | 0,010035752 0 703 | 0,010020811 4 714 | 0,01000827 0 714 0,01 0
27 512 | 0,010198187 0 640 | 0,010035752 0 703 | 0,010020811 0 714 | 0,01000827 0 714 0,01 0
28 511 | 0,010178269 2 640 | 0,010035752 2 703 | 0,010020811 0 714 | 0,01000827 2 714 0,01 0
29 511 | 0,010178269 0 640 | 0,010035752 0 703 | 0,010020811 1 714 | 0,01000827 0 714 0,01 0
30 510 | 0,010158351 0 640 | 0,010035752 0 703 | 0,010020811 0 714 | 0,01000827 0 714 0,01 0
31 510 | 0,010158351 1 639 | 0,010020072 3 702 | 0,010006557 3 714 | 0,01000827 3 714 0,01 0
32 510 | 0,010158351 2 639 | 0,010020072 0 702 | 0,010006557 3 714 | 0,01000827 2 714 0,01 0
33 510 | 0,010158351 0 639 | 0,010020072 0 702 | 0,010006557 2 714 | 0,01000827 0 714 0,01 0
34 508 | 0,010118514 0 639 | 0,010020072 5 702 | 0,010006557 0 714 | 0,01000827 2 714 0,01 0
35 508 | 0,010118514 0 639 | 0,010020072 0 702 | 0,010006557 0 714 | 0,01000827 0 714 0,01 0

36 508 | 0,010118514 1 639 | 0,010020072 0 702 | 0,010006557 0 714 | 0,01000827 1 714 0,01 0
37 508 | 0,010118514 2 639 | 0,010020072 0 702 | 0,010006557 1 714 | 0,01000827 0 714 0,01 0
38 508 | 0,010118514 0 639 | 0,010020072 3 702 | 0,010006557 2 714 | 0,01000827 0 714 0,01 0
39 507 | 0,010098596 2 639 | 0,010020072 0 702 | 0,010006557 2 714 | 0,01000827 2 714 0,01 0
40 506 | 0,010078677 1 638 | 0,010004391 2 702 | 0,010006557 0 714 | 0,01000827 0 714 0,01 0
41 505 | 0,010058759 0 638 | 0,010004391 0 702 | 0,010006557 3 714 | 0,01000827 1 714 0,01 0
42 505 | 0,010058759 3 638 | 0,010004391 0 702 | 0,010006557 0 713 | 0,009994253 0 714 0,01 0
43 504 | 0,010038841 0 638 | 0,010004391 3 702 | 0,010006557 0 713 | 0,009994253 0 714 0,01 0
44 504 | 0,010038841 0 638 | 0,010004391 0 702 | 0,010006557 0 713 | 0,009994253 1 714 0,01 0
45 504 | 0,010038841 0 638 | 0,010004391 1 702 | 0,010006557 3 713 | 0,009994253 2 714 0,01 0
46 503 | 0,010018922 2 638 | 0,010004391 1 702 | 0,010006557 0 713 | 0,009994253 2 714 0,01 0
47 503 | 0,010018922 0 638 | 0,010004391 0 702 | 0,010006557 4 713 | 0,009994253 0 714 0,01 0
48 502 | 0,009999004 0 638 | 0,010004391 1 702 | 0,010006557 0 713 | 0,009994253 1 714 0,01 0
49 501 | 0,009979086 3 638 | 0,010004391 0 702 | 0,010006557 2 713 | 0,009994253 0 714 0,01 0
50 501 | 0,009979086 0 637 | 0,00998871 0 701 | 0,009992303 0 713 | 0,009994253 0 714 0,01 0
51 501 | 0,009979086 0 637 | 0,00998871 2 701 | 0,009992303 0 713 | 0,009994253 0 714 0,01 0
52 500 | 0,009959167 0 637 | 0,00998871 0 701 | 0,009992303 0 713 | 0,009994253 2 714 0,01 0
53 500 | 0,009959167 3 637 | 0,00998871 1 701 | 0,009992303 1 713 | 0,009994253 2 714 0,01 0
54 499 | 0,009939249 0 637 | 0,00998871 0 701 | 0,009992303 0 713 | 0,009994253 2 714 0,01 0
55 498 | 0,009919331 0 637 | 0,00998871 4 701 | 0,009992303 3 713 | 0,009994253 0 714 0,01 0
56 498 | 0,009919331 0 636 | 0,009973029 0 701 | 0,009992303 0 713 | 0,009994253 0 714 0,01 0
57 498 | 0,009919331 2 636 | 0,009973029 1 701 | 0,009992303 3 713 | 0,009994253 2 714 0,01 0
58 497 | 0,009899412 1 636 | 0,009973029 3 701 | 0,009992303 2 713 | 0,009994253 0 714 0,01 0
59 497 | 0,009899412 0 636 | 0,009973029 0 701 | 0,009992303 0 713 | 0,009994253 1 714 0,01 0
60 496 | 0,009879494 2 636 | 0,009973029 0 701 | 0,009992303 0 713 | 0,009994253 2 714 0,01 0
61 496 | 0,009879494 0 636 | 0,009973029 0 701 | 0,009992303 0 713 | 0,009994253 0 714 0,01 0
62 496 | 0,009879494 0 636 | 0,009973029 0 701 | 0,009992303 2 713 | 0,009994253 0 714 0,01 0
63 496 | 0,009879494 0 636 | 0,009973029 1 701 | 0,009992303 2 713 | 0,009994253 2 714 0,01 0
64 495 | 0,009859576 2 636 | 0,009973029 0 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
65 495 | 0,009859576 0 636 | 0,009973029 0 700 | 0,009978048 1 713 | 0,009994253 0 714 0,01 0
66 495 | 0,009859576 0 636 | 0,009973029 0 700 | 0,009978048 0 713 | 0,009994253 2 714 0,01 0
67 495 | 0,009859576 0 635 | 0,009957348 0 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
68 494 | 0,009839657 3 635 | 0,009957348 3 700 | 0,009978048 1 713 | 0,009994253 2 714 0,01 0
69 493 | 0,009819739 0 635 | 0,009957348 0 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
70 493 | 0,009819739 0 635 | 0,009957348 1 700 | 0,009978048 2 713 | 0,009994253 1 714 0,01 0
71 493 | 0,009819739 0 635 | 0,009957348 0 700 | 0,009978048 0 713 | 0,009994253 2 714 0,01 0

72 493 | 0,009819739 1 635 | 0,009957348 2 700 | 0,009978048 0 713 | 0,009994253 3 714 0,01 0
73 492 | 0,009799821 0 635 | 0,009957348 2 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
74 492 | 0,009799821 3 635 | 0,009957348 0 700 | 0,009978048 2 713 | 0,009994253 3 714 0,01 0
75 492 | 0,009799821 0 635 | 0,009957348 1 700 | 0,009978048 2 713 | 0,009994253 0 714 0,01 0
76 492 | 0,009799821 0 635 | 0,009957348 0 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
77 492 | 0,009799821 2 634 | 0,009941667 0 700 | 0,009978048 4 713 | 0,009994253 2 714 0,01 0
78 492 | 0,009799821 0 634 | 0,009941667 4 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
79 491 | 0,009779902 0 634 | 0,009941667 0 700 | 0,009978048 0 713 | 0,009994253 2 714 0,01 0
80 491 | 0,009779902 0 634 | 0,009941667 1 700 | 0,009978048 3 713 | 0,009994253 3 714 0,01 0
81 490 | 0,009759984 2 634 | 0,009941667 2 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
82 490 | 0,009759984 0 634 | 0,009941667 0 700 | 0,009978048 2 713 | 0,009994253 1 714 0,01 0
83 488 | 0,009720147 3 634 | 0,009941667 0 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
84 487 | 0,009700229 0 634 | 0,009941667 0 700 | 0,009978048 0 713 | 0,009994253 4 714 0,01 0
85 487 | 0,009700229 3 634 | 0,009941667 2 700 | 0,009978048 1 713 | 0,009994253 0 714 0,01 0
86 487 | 0,009700229 0 634 | 0,009941667 0 700 | 0,009978048 0 713 | 0,009994253 1 714 0,01 0
87 486 | 0,009680311 1 634 | 0,009941667 2 700 | 0,009978048 0 713 | 0,009994253 0 714 0,01 0
88 486 | 0,009680311 0 634 | 0,009941667 0 700 | 0,009978048 0 713 | 0,009994253 3 714 0,01 0
89 486 | 0,009680311 0 634 | 0,009941667 3 700 | 0,009978048 1 713 | 0,009994253 0 714 0,01 0
90 482 | 0,009600637 3 634 | 0,009941667 1 699 | 0,009963794 0 713 | 0,009994253 2 714 0,01 0
91 481 | 0,009580719 2 634 | 0,009941667 0 699 | 0,009963794 0 713 | 0,009994253 0 714 0,01 0
92 481 | 0,009580719 0 633 | 0,009925986 0 699 | 0,009963794 2 713 | 0,009994253 2 714 0,01 0
93 480 | 0,009560801 0 633 | 0,009925986 1 699 | 0,009963794 0 713 | 0,009994253 0 714 0,01 0
94 480 | 0,009560801 2 633 | 0,009925986 0 699 | 0,009963794 4 713 | 0,009994253 2 714 0,01 0
95 479 | 0,009540882 0 633 | 0,009925986 1 699 | 0,009963794 0 713 | 0,009994253 0 714 0,01 0
96 479 | 0,009540882 2 633 | 0,009925986 0 699 | 0,009963794 2 713 | 0,009994253 3 714 0,01 0
97 473 | 0,009421372 0 633 | 0,009925986 1 699 | 0,009963794 3 713 | 0,009994253 0 714 0,01 0
98 471 | 0,009381536 2 633 | 0,009925986 2 699 | 0,009963794 0 713 | 0,009994253 1 714 0,01 0
99 463 | 0,009222189 1 633 | 0,009925986 0 699 | 0,009963794 1 713 | 0,009994253 0 714 0,01 0
100 461 | 0,009182352 0 633 | 0,009925986 2 699 | 0,009963794 0 713 | 0,009994253 3 714 0,01 0

Code:

const chromosome = 100,
gen = 1000,
itterations = 100;

let generation = generateGeneration (chromosome, gen),
itterationNum = 0;

for (let 1 = 0; ++1 < itterations;) {
generation = generation.sort((genl, gen2) => {
return fitness(gen2) - fitness(genl);

1)

readOut (generation) ;

generation = nextGeneration (generation);
}

readOut (generation) ;

return;

function generateGeneration (count, size) {
let generation = [];

for (let 1 = -1; ++1i < count;) {

let gen = [];

for (let j = -1; ++j < size;) {

gen.push (getRandomBinary ()) ;
}

generation.push (gen) ;

}

return generation;

}

function fitness(gen) {

let count = 0;

for (let 1 = -1; ++i < gen.length;) if (gen[i]) count++;
return count;

}

function nextGeneration (parentGeneration) {

let average = 0, allFitness=0,currFitness=0,probability==0,newGeneration = [],currProbability;
let firstIndex=0,secondIndex =0;

for (let i = 0; i < generation.length; i++) allFitness +=fitness(generation[i]);

for (let 1 = 0; 4++1 < chromosome;) {

let probability 1 = getRandomFloat (0, 1),
probability 2 = getRandomFloat (0, 1);
currFitness=fitness (generation([i]);

currProbability =currFitness/allFitness;

if (probability 1 >= currProbability) firstIndex = 1i;
if (probability 2 >= currProbability) secondIndex = 1i;

document.write (firstIndex + " " + secondIndex + " | ");
newGeneration.push (...crossover (parentGeneration[firstIndex],
parentGeneration[secondIndex]));

}

return newGeneration;

}

function crossover (firstParent, secondParent) {

let crossIndex = getRandomInt (1, firstParent.length);

let firstPartFirst = firstParent.slice (0, crossIndex),
secondPartFirst = firstParent.slice(crossIndex, firstParent.length),
firstPartSecond = secondParent.slice (0, crossIndex),
secondPartSecond = secondParent.slice(crossIndex, secondParent.length);
return [firstPartFirst.concat (secondPartSecond),
firstPartSecond.concat (secondPartFirst)];

}

function getRandomBinary (min, max) {

return Math.round (Math.random()) ;

}

function getRandomInt (min, max) {

return Math.floor (Math.random() * (max - min)) + min;

}

function getRandomFloat (min, max) {

return (Math.random() * (max - min)) + min;

}

function bestCh (generation) {

let best = fitness(generation[0]); ;
for (let i = 1; i < generation.length; i++) {
if (fitness(generation[i])>best) best = fitness(generation[i]);

}
return best;
}
function readOut (generation) {
let average = 0, allFitness=0,currFitness=0,probability==0;
for (let 1 = 0; 1 < generation.length; i++) allFitness +=fitness(generation[i]);
for (let 1 = 0; 1 < generation.length; i++) {
currFitness=fitness (generation[i]);
probability=currFitness/allFitness;
document.write (currFitness + "|" + probability + '
"');
}
averageCh = Math.floor (allsum / generation.length);
document.write ("Average "+averageCh + '
");
document.write ("Best" + bestCh(generation)+'
");

}

