
Task 1 All One Problem (12.02.2016)

Student –Polina Rachkovskaya

We have the initial population with 100 binary chromosomes with 1000 genes. The fitness is the number of “1” is good,

“0” is bad. We need to get gene which consists all “1”.

Algorithm:

1. Create 100 binary-chromosomes at random where each chromosome contains 1000 gens.

2. Select 2 chromosomes using Roulette method.

3. Create a child chromosome by a one-point-crossover.

4. Repeat steps 2-3, until we get new population.

5. Repeat 4. until the fitness value does not change any more.

Results:

400

450

500

550

600

650

700

750

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

FI
TN

ES
S

ITERATION

All one problem

Best

Average

The best fitness chromosome in 1st generation is 543 and in last 100th - generation 714.

Since 76 iteration, there is no improvement of chromosomes because we achieved the best result.

Iteration 1 25 50 75 100

Fitness Probability Choice Fitness Probability Choice Fitness Probability Choice Fitness Probability Choice Fitness Probability Choice

1 543 0,010815656 3 648 0,010161199 2 706 0,010063574 2 714 0,01000827 3 714 0,01 0

2 533 0,010616472 2 647 0,010145518 0 705 0,01004932 0 714 0,01000827 2 714 0,01 0

3 532 0,010596554 3 645 0,010114157 3 705 0,01004932 3 714 0,01000827 2 714 0,01 0

4 532 0,010596554 0 644 0,010098476 5 705 0,01004932 0 714 0,01000827 1 714 0,01 0

5 529 0,010536799 3 644 0,010098476 2 705 0,01004932 3 714 0,01000827 2 714 0,01 0

6 527 0,010496962 2 644 0,010098476 0 705 0,01004932 0 714 0,01000827 0 714 0,01 0

7 526 0,010477044 1 643 0,010082795 1 705 0,01004932 2 714 0,01000827 0 714 0,01 0

8 525 0,010457126 1 643 0,010082795 2 704 0,010035066 0 714 0,01000827 1 714 0,01 0

9 525 0,010457126 1 643 0,010082795 3 704 0,010035066 0 714 0,01000827 0 714 0,01 0

10 525 0,010457126 2 643 0,010082795 0 704 0,010035066 0 714 0,01000827 0 714 0,01 0

11 524 0,010437207 0 643 0,010082795 3 704 0,010035066 4 714 0,01000827 0 714 0,01 0

12 523 0,010417289 2 643 0,010082795 0 704 0,010035066 0 714 0,01000827 2 714 0,01 0

13 522 0,010397371 0 642 0,010067114 3 704 0,010035066 2 714 0,01000827 0 714 0,01 0

14 522 0,010397371 0 642 0,010067114 2 704 0,010035066 0 714 0,01000827 0 714 0,01 0

15 522 0,010397371 2 642 0,010067114 0 704 0,010035066 3 714 0,01000827 2 714 0,01 0

16 520 0,010357534 1 642 0,010067114 0 703 0,010020811 0 714 0,01000827 0 714 0,01 0

17 519 0,010337616 3 642 0,010067114 2 703 0,010020811 0 714 0,01000827 1 714 0,01 0

18 517 0,010297779 2 641 0,010051433 0 703 0,010020811 0 714 0,01000827 2 714 0,01 0

19 516 0,010277861 1 641 0,010051433 3 703 0,010020811 0 714 0,01000827 1 714 0,01 0

20 515 0,010257942 0 641 0,010051433 1 703 0,010020811 5 714 0,01000827 2 714 0,01 0

21 514 0,010238024 1 641 0,010051433 0 703 0,010020811 0 714 0,01000827 2 714 0,01 0

22 514 0,010238024 2 641 0,010051433 2 703 0,010020811 0 714 0,01000827 0 714 0,01 0

23 514 0,010238024 2 641 0,010051433 0 703 0,010020811 2 714 0,01000827 1 714 0,01 0

24 513 0,010218106 2 640 0,010035752 1 703 0,010020811 0 714 0,01000827 0 714 0,01 0

25 513 0,010218106 3 640 0,010035752 1 703 0,010020811 0 714 0,01000827 2 714 0,01 0

26 512 0,010198187 2 640 0,010035752 0 703 0,010020811 4 714 0,01000827 0 714 0,01 0

27 512 0,010198187 0 640 0,010035752 0 703 0,010020811 0 714 0,01000827 0 714 0,01 0

28 511 0,010178269 2 640 0,010035752 2 703 0,010020811 0 714 0,01000827 2 714 0,01 0

29 511 0,010178269 0 640 0,010035752 0 703 0,010020811 1 714 0,01000827 0 714 0,01 0

30 510 0,010158351 0 640 0,010035752 0 703 0,010020811 0 714 0,01000827 0 714 0,01 0

31 510 0,010158351 1 639 0,010020072 3 702 0,010006557 3 714 0,01000827 3 714 0,01 0

32 510 0,010158351 2 639 0,010020072 0 702 0,010006557 3 714 0,01000827 2 714 0,01 0

33 510 0,010158351 0 639 0,010020072 0 702 0,010006557 2 714 0,01000827 0 714 0,01 0

34 508 0,010118514 0 639 0,010020072 5 702 0,010006557 0 714 0,01000827 2 714 0,01 0

35 508 0,010118514 0 639 0,010020072 0 702 0,010006557 0 714 0,01000827 0 714 0,01 0

36 508 0,010118514 1 639 0,010020072 0 702 0,010006557 0 714 0,01000827 1 714 0,01 0

37 508 0,010118514 2 639 0,010020072 0 702 0,010006557 1 714 0,01000827 0 714 0,01 0

38 508 0,010118514 0 639 0,010020072 3 702 0,010006557 2 714 0,01000827 0 714 0,01 0

39 507 0,010098596 2 639 0,010020072 0 702 0,010006557 2 714 0,01000827 2 714 0,01 0

40 506 0,010078677 1 638 0,010004391 2 702 0,010006557 0 714 0,01000827 0 714 0,01 0

41 505 0,010058759 0 638 0,010004391 0 702 0,010006557 3 714 0,01000827 1 714 0,01 0

42 505 0,010058759 3 638 0,010004391 0 702 0,010006557 0 713 0,009994253 0 714 0,01 0

43 504 0,010038841 0 638 0,010004391 3 702 0,010006557 0 713 0,009994253 0 714 0,01 0

44 504 0,010038841 0 638 0,010004391 0 702 0,010006557 0 713 0,009994253 1 714 0,01 0

45 504 0,010038841 0 638 0,010004391 1 702 0,010006557 3 713 0,009994253 2 714 0,01 0

46 503 0,010018922 2 638 0,010004391 1 702 0,010006557 0 713 0,009994253 2 714 0,01 0

47 503 0,010018922 0 638 0,010004391 0 702 0,010006557 4 713 0,009994253 0 714 0,01 0

48 502 0,009999004 0 638 0,010004391 1 702 0,010006557 0 713 0,009994253 1 714 0,01 0

49 501 0,009979086 3 638 0,010004391 0 702 0,010006557 2 713 0,009994253 0 714 0,01 0

50 501 0,009979086 0 637 0,00998871 0 701 0,009992303 0 713 0,009994253 0 714 0,01 0

51 501 0,009979086 0 637 0,00998871 2 701 0,009992303 0 713 0,009994253 0 714 0,01 0

52 500 0,009959167 0 637 0,00998871 0 701 0,009992303 0 713 0,009994253 2 714 0,01 0

53 500 0,009959167 3 637 0,00998871 1 701 0,009992303 1 713 0,009994253 2 714 0,01 0

54 499 0,009939249 0 637 0,00998871 0 701 0,009992303 0 713 0,009994253 2 714 0,01 0

55 498 0,009919331 0 637 0,00998871 4 701 0,009992303 3 713 0,009994253 0 714 0,01 0

56 498 0,009919331 0 636 0,009973029 0 701 0,009992303 0 713 0,009994253 0 714 0,01 0

57 498 0,009919331 2 636 0,009973029 1 701 0,009992303 3 713 0,009994253 2 714 0,01 0

58 497 0,009899412 1 636 0,009973029 3 701 0,009992303 2 713 0,009994253 0 714 0,01 0

59 497 0,009899412 0 636 0,009973029 0 701 0,009992303 0 713 0,009994253 1 714 0,01 0

60 496 0,009879494 2 636 0,009973029 0 701 0,009992303 0 713 0,009994253 2 714 0,01 0

61 496 0,009879494 0 636 0,009973029 0 701 0,009992303 0 713 0,009994253 0 714 0,01 0

62 496 0,009879494 0 636 0,009973029 0 701 0,009992303 2 713 0,009994253 0 714 0,01 0

63 496 0,009879494 0 636 0,009973029 1 701 0,009992303 2 713 0,009994253 2 714 0,01 0

64 495 0,009859576 2 636 0,009973029 0 700 0,009978048 0 713 0,009994253 0 714 0,01 0

65 495 0,009859576 0 636 0,009973029 0 700 0,009978048 1 713 0,009994253 0 714 0,01 0

66 495 0,009859576 0 636 0,009973029 0 700 0,009978048 0 713 0,009994253 2 714 0,01 0

67 495 0,009859576 0 635 0,009957348 0 700 0,009978048 0 713 0,009994253 0 714 0,01 0

68 494 0,009839657 3 635 0,009957348 3 700 0,009978048 1 713 0,009994253 2 714 0,01 0

69 493 0,009819739 0 635 0,009957348 0 700 0,009978048 0 713 0,009994253 0 714 0,01 0

70 493 0,009819739 0 635 0,009957348 1 700 0,009978048 2 713 0,009994253 1 714 0,01 0

71 493 0,009819739 0 635 0,009957348 0 700 0,009978048 0 713 0,009994253 2 714 0,01 0

72 493 0,009819739 1 635 0,009957348 2 700 0,009978048 0 713 0,009994253 3 714 0,01 0

73 492 0,009799821 0 635 0,009957348 2 700 0,009978048 0 713 0,009994253 0 714 0,01 0

74 492 0,009799821 3 635 0,009957348 0 700 0,009978048 2 713 0,009994253 3 714 0,01 0

75 492 0,009799821 0 635 0,009957348 1 700 0,009978048 2 713 0,009994253 0 714 0,01 0

76 492 0,009799821 0 635 0,009957348 0 700 0,009978048 0 713 0,009994253 0 714 0,01 0

77 492 0,009799821 2 634 0,009941667 0 700 0,009978048 4 713 0,009994253 2 714 0,01 0

78 492 0,009799821 0 634 0,009941667 4 700 0,009978048 0 713 0,009994253 0 714 0,01 0

79 491 0,009779902 0 634 0,009941667 0 700 0,009978048 0 713 0,009994253 2 714 0,01 0

80 491 0,009779902 0 634 0,009941667 1 700 0,009978048 3 713 0,009994253 3 714 0,01 0

81 490 0,009759984 2 634 0,009941667 2 700 0,009978048 0 713 0,009994253 0 714 0,01 0

82 490 0,009759984 0 634 0,009941667 0 700 0,009978048 2 713 0,009994253 1 714 0,01 0

83 488 0,009720147 3 634 0,009941667 0 700 0,009978048 0 713 0,009994253 0 714 0,01 0

84 487 0,009700229 0 634 0,009941667 0 700 0,009978048 0 713 0,009994253 4 714 0,01 0

85 487 0,009700229 3 634 0,009941667 2 700 0,009978048 1 713 0,009994253 0 714 0,01 0

86 487 0,009700229 0 634 0,009941667 0 700 0,009978048 0 713 0,009994253 1 714 0,01 0

87 486 0,009680311 1 634 0,009941667 2 700 0,009978048 0 713 0,009994253 0 714 0,01 0

88 486 0,009680311 0 634 0,009941667 0 700 0,009978048 0 713 0,009994253 3 714 0,01 0

89 486 0,009680311 0 634 0,009941667 3 700 0,009978048 1 713 0,009994253 0 714 0,01 0

90 482 0,009600637 3 634 0,009941667 1 699 0,009963794 0 713 0,009994253 2 714 0,01 0

91 481 0,009580719 2 634 0,009941667 0 699 0,009963794 0 713 0,009994253 0 714 0,01 0

92 481 0,009580719 0 633 0,009925986 0 699 0,009963794 2 713 0,009994253 2 714 0,01 0

93 480 0,009560801 0 633 0,009925986 1 699 0,009963794 0 713 0,009994253 0 714 0,01 0

94 480 0,009560801 2 633 0,009925986 0 699 0,009963794 4 713 0,009994253 2 714 0,01 0

95 479 0,009540882 0 633 0,009925986 1 699 0,009963794 0 713 0,009994253 0 714 0,01 0

96 479 0,009540882 2 633 0,009925986 0 699 0,009963794 2 713 0,009994253 3 714 0,01 0

97 473 0,009421372 0 633 0,009925986 1 699 0,009963794 3 713 0,009994253 0 714 0,01 0

98 471 0,009381536 2 633 0,009925986 2 699 0,009963794 0 713 0,009994253 1 714 0,01 0

99 463 0,009222189 1 633 0,009925986 0 699 0,009963794 1 713 0,009994253 0 714 0,01 0

100 461 0,009182352 0 633 0,009925986 2 699 0,009963794 0 713 0,009994253 3 714 0,01 0

Code:
const chromosome = 100,

gen = 1000,

itterations = 100;

let generation = generateGeneration(chromosome, gen),

itterationNum = 0;

for (let i = 0; ++i < itterations;) {

generation = generation.sort((gen1, gen2) => {

return fitness(gen2) - fitness(gen1);

});

readOut(generation);

generation = nextGeneration(generation);

}

readOut(generation);

return;

function generateGeneration(count, size) {

let generation = [];

for (let i = -1; ++i < count;) {

let gen = [];

for (let j = -1; ++j < size;) {

gen.push(getRandomBinary());

}

generation.push(gen);

}

return generation;

}

function fitness(gen) {

let count = 0;

for (let i = -1; ++i < gen.length;) if (gen[i]) count++;

return count;

}

function nextGeneration(parentGeneration) {

let average = 0, allFitness=0,currFitness=0,probability==0,newGeneration = [],currProbability;

let firstIndex=0,secondIndex =0;

for (let i = 0; i < generation.length; i++) allFitness +=fitness(generation[i]);

for (let i = 0; ++i < chromosome;) {

let probability_1 = getRandomFloat(0, 1),

probability_2 = getRandomFloat(0, 1);

currFitness=fitness(generation[i]);

currProbability =currFitness/allFitness;

if (probability_1 >= currProbability) firstIndex = i;

if (probability_2 >= currProbability) secondIndex = i;

document.write(firstIndex + " " + secondIndex + " | ");

newGeneration.push(...crossover(parentGeneration[firstIndex],

parentGeneration[secondIndex]));

}

return newGeneration;

}

function crossover(firstParent, secondParent) {

let crossIndex = getRandomInt(1, firstParent.length);

let firstPartFirst = firstParent.slice(0, crossIndex),

secondPartFirst = firstParent.slice(crossIndex, firstParent.length),

firstPartSecond = secondParent.slice(0, crossIndex),

secondPartSecond = secondParent.slice(crossIndex, secondParent.length);

return [firstPartFirst.concat(secondPartSecond),

firstPartSecond.concat(secondPartFirst)];

}

function getRandomBinary(min, max) {

return Math.round(Math.random());

}

function getRandomInt(min, max) {

return Math.floor(Math.random() * (max - min)) + min;

}

function getRandomFloat(min, max) {

return (Math.random() * (max - min)) + min;

}

function bestCh (generation) {

let best = fitness(generation[0]); ;

 for (let i = 1; i < generation.length; i++) {

 if (fitness(generation[i])>best) best = fitness(generation[i]);

 }

return best;

}

function readOut(generation) {

let average = 0, allFitness=0,currFitness=0,probability==0;

for (let i = 0; i < generation.length; i++) allFitness +=fitness(generation[i]);

for (let i = 0; i < generation.length; i++){

currFitness=fitness(generation[i]);

probability=currFitness/allFitness;

document.write(currFitness + "|" + probability + '
');

}

averageCh = Math.floor(allsum / generation.length);

document.write("Average "+averageCh + '
');

document.write("Best" + bestCh(generation)+'
');

}

