
Practice 1

All One Problem

Made by

5 course student

group II-10

Artsiom Drapeza (Artyom Drapezo)

Exercise 1
1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome – the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a one-point-crossover.

5. Give the child a mutation with a probability of 1/1000 = 0.001.

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.

(2) Desplay the best and average fitness vs. generation

Code
Constants.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab1

{

 class Constants

 {

 public static int ginCountInChromosom = 1000;

 public static int chromosomCountInPopulation = 100;

 }

}

Chromosom.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab1

{

 class Chromosom

 {

 private static Random rng = new Random();

 private List<bool> gens;

 private int fitness;

 private double probabilityToBeSelected;

 private int selectedTimes = 0;

 public Chromosom()

 {

 gens = new List<bool>();

 for (int i = 0; i < Constants.ginCountInChromosom; i++)

 {

 gens.Add(rng.NextDouble() > 0.5 ? true : false);

 }

 calculateFitness();

 }

 public static List<Chromosom> crossover(Chromosom firstParent, Chromosom secondParent)

 {

 int cut = rng.Next(Constants.ginCountInChromosom - 1) + 1;

 Chromosom firstChild = new Chromosom();

 List<bool> firstChildGins = new List<bool>();

 firstChildGins.AddRange(firstParent.getGens().GetRange(0, cut));

 firstChildGins.AddRange(secondParent.getGens().GetRange(cut, Constants.ginCountInChromosom -

cut));

 firstChild.setGens(firstChildGins);

 Chromosom secondChild = new Chromosom();

 List<bool> secondChildGins = new List<bool>();

 secondChildGins.AddRange(secondParent.getGens().GetRange(0, cut));

 secondChildGins.AddRange(firstParent.getGens().GetRange(cut, Constants.ginCountInChromosom -

cut));

 secondChild.setGens(secondChildGins);

 List<Chromosom> result = new List<Chromosom>();

 result.Add(firstChild);

 result.Add(secondChild);

 return result;

 }

 public int calculateFitness()

 {

 int f = 0;

 for (int i = 0; i < Constants.ginCountInChromosom; i++)

 {

 f += (gens[i] == true ? 1 : 0);

 }

 fitness = f;

 return f;

 }

 public void setGens(List<bool> newGens)

 {

 gens = newGens;

 }

 public List<bool> getGens()

 {

 return gens;

 }

 public int getFitness()

 {

 return fitness;

 }

 public void setProbabilityToBeSelected(double newProbability)

 {

 probabilityToBeSelected = newProbability;

 }

 public double getProbabilityToBeSelected()

 {

 return probabilityToBeSelected;

 }

 public int getSelectedTimes()

 {

 return selectedTimes;

 }

 public void selectedTimesPlusOne()

 {

 selectedTimes++;

 }

 }

}

Population.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab1

{

 class Population

 {

 private List<Chromosom> chromosoms;

 private Random rng = new Random();

 public Population()

 {

 chromosoms = new List<Chromosom>();

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 chromosoms.Add(new Chromosom());

 }

 }

 public List<int> getFitnessList(){

 List<int> fitnessList = new List<int>();

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 fitnessList.Add(chromosoms[i].calculateFitness());

 }

 return fitnessList;

 }

 public void sortChromosoms()

 {

 chromosoms.Sort((ch1, ch2) => ch1.calculateFitness().CompareTo(ch2.calculateFitness()));

 }

 public void calcProbabilitiesToBeSelected(){

 int fitnessSum = 0;

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 fitnessSum += chromosoms[i].calculateFitness();

 }

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 chromosoms[i].setProbabilityToBeSelected((double)chromosoms[i].getFitness() / fitnessSum);

 }

 }

 public Population getNextGeneration()

 {

 calcProbabilitiesToBeSelected();

 Population nextGeneration = new Population();

 List<Chromosom> nextPopulationChromosoms = new List<Chromosom>();

 for (int i = 0; i < Constants.chromosomCountInPopulation / 2; i++)

 {

 double r1 = rng.NextDouble();

 double r2 = rng.NextDouble();

 while (r1 == 0.0 || r1 == 1.0)

 {

 r1 = rng.NextDouble();

 }

 while (r2 == 0.0 || r2 == 1.0)

 {

 r2 = rng.NextDouble();

 }

 double probabilitySum1 = 0;

 double probabilitySum2 = 0;

 int indexOfTheFirstParent = 0;

 int indexOfTheSecondParent = 0;

 while (probabilitySum1 < r1)

 {

 probabilitySum1 += chromosoms[indexOfTheFirstParent].getProbabilityToBeSelected();

 indexOfTheFirstParent++;

 }

 while (probabilitySum2 < r2)

 {

 probabilitySum2 += chromosoms[indexOfTheSecondParent].getProbabilityToBeSelected();

 indexOfTheSecondParent++;

 }

 if (indexOfTheFirstParent >= Constants.chromosomCountInPopulation)

 {

 indexOfTheFirstParent = Constants.chromosomCountInPopulation - 1;

 }

 if (indexOfTheSecondParent >= Constants.chromosomCountInPopulation)

 {

 indexOfTheSecondParent = Constants.chromosomCountInPopulation - 1;

 }

 nextPopulationChromosoms.AddRange(Chromosom.crossover(chromosoms[indexOfTheFirstParent],

chromosoms[indexOfTheSecondParent]));

 chromosoms[indexOfTheFirstParent].selectedTimesPlusOne();

 chromosoms[indexOfTheSecondParent].selectedTimesPlusOne();

 }

 nextGeneration.setChromosoms(nextPopulationChromosoms);

 return nextGeneration;

 }

 public void setChromosoms(List<Chromosom> newChromosoms)

 {

 chromosoms = newChromosoms;

 }

 public List<Chromosom> getChromosoms()

 {

 return chromosoms;

 }

 public int getBestFitness()

 {

 int bestFitness = 0;

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 bestFitness = chromosoms[i].calculateFitness() > bestFitness ?

chromosoms[i].calculateFitness() : bestFitness;

 }

 return bestFitness;

 }

 public int getAvarageFitness()

 {

 int fitnessSumm = 0;

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 fitnessSumm += chromosoms[i].calculateFitness();

 }

 return fitnessSumm / Constants.chromosomCountInPopulation;

 }

 }

}

Procram.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab1

{

 class Program

 {

 static void Main(string[] args)

 {

 List<int> maxFitnessList = new List<int>();

 List<int> averageFitnessList = new List<int>();

 Population currentGeneration = new Population();

 List<Population> populationsForTable = new List<Population>();

 List<int> populationsIndex = new List<int>();

 int generationCount = 0;

 do

 {

 maxFitnessList.Add(currentGeneration.getBestFitness());

 averageFitnessList.Add(currentGeneration.getAvarageFitness());

 currentGeneration = currentGeneration.getNextGeneration();

 currentGeneration.sortChromosoms();

 if (generationCount % 100 == 0)

 {

 populationsForTable.Add(currentGeneration);

 populationsIndex.Add(generationCount);

 }

 generationCount++;

 } while (!shallStop(maxFitnessList));

 populationsForTable.Add(currentGeneration);

 populationsIndex.Add(generationCount);

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"E:\A_WORK\5cource\siit\lab1\table.txt"))

 {

 foreach (int i in populationsIndex)

 {

 file.Write("{0}\t", i);

 }

 file.WriteLine();

 for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

 {

 foreach (Population p in populationsForTable)

 {

 file.Write(string.Format("{0}\t{1:0.0000}\t{2}\t",

p.getChromosoms()[i].getFitness(), p.getChromosoms()[i].getProbabilityToBeSelected(),

p.getChromosoms()[i].getSelectedTimes()));

 }

 file.WriteLine();

 }

 }

 for(int i = 0; i < maxFitnessList.Count; i++){

 Console.WriteLine("Iteration: \t" + i +"\t Max fitness: \t" + maxFitnessList[i] + "\t

Average fitness \t" + averageFitnessList[i]);

 }

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"E:\A_WORK\5cource\siit\lab1\MaxFitness.txt"))

 {

 foreach (int fitness in maxFitnessList)

 {

 file.WriteLine(fitness);

 }

 }

 using (System.IO.StreamWriter file = new

System.IO.StreamWriter(@"E:\A_WORK\5cource\siit\lab1\AverageFitness.txt"))

 {

 foreach (int fitness in averageFitnessList)

 {

 file.WriteLine(fitness);

 }

 }

 Console.ReadKey();

 }

 public static bool shallStop(List<int> maxFitnessList)

 {

 if (maxFitnessList.Last() == Constants.ginCountInChromosom)

 return true;

 int checkLast = 10;

 if (maxFitnessList.Count > checkLast)

 {

 int c = 0;

 for (int i = 1; i < checkLast + 1; i++)

 {

 if (maxFitnessList[maxFitnessList.Count - i] > maxFitnessList.Last() -

(Constants.chromosomCountInPopulation * 0.01) && maxFitnessList[maxFitnessList.Count - i] <

maxFitnessList.Last() + (Constants.chromosomCountInPopulation * 0.01))

 {

 c++;

 }

 }

 return c == checkLast;

 }

 return false;

 }

 }

}

Graphic Fitness(Generation)

Table

490

510

530

550

570

590

610

630

0 50 100 150 200

Fi
tn
e
ss

Generation

AVG

MAX

Generation 0 100 200 207 last

Chromosom Fitness
Probability to
be selected

Selected
count Fitness

Probability to
be selected

Selected
count Fitness

Probability to
be selected

Selected
count Fitness

Probability
to be
selected

Selected
count

1 552 0,011 2 596 0,0103 0 619 0,0101 1 619 0 0

2 540 0,0108 1 594 0,0102 1 617 0,0101 1 619 0 0

3 538 0,0108 1 593 0,0102 0 617 0,0101 1 619 0 0

4 537 0,0107 1 592 0,0102 1 617 0,0101 3 618 0 0

5 528 0,0106 1 592 0,0102 0 617 0,0101 0 617 0 0

6 527 0,0105 0 592 0,0102 1 617 0,0101 1 617 0 0

7 526 0,0105 1 590 0,0102 1 617 0,0101 0 617 0 0

8 525 0,0105 1 590 0,0102 0 616 0,0101 0 617 0 0

9 524 0,0105 1 590 0,0102 0 616 0,0101 0 617 0 0

10 522 0,0104 3 588 0,0101 1 616 0,0101 0 616 0 0

11 522 0,0104 2 588 0,0101 1 616 0,0101 2 616 0 0

12 521 0,0104 1 588 0,0101 0 616 0,0101 1 616 0 0

13 520 0,0104 1 588 0,0101 4 616 0,0101 1 616 0 0

14 520 0,0104 1 588 0,0101 0 616 0,0101 1 615 0 0

15 519 0,0104 1 587 0,0101 0 615 0,01 0 615 0 0

16 518 0,0104 2 586 0,0101 1 615 0,01 0 615 0 0

17 517 0,0103 0 586 0,0101 2 615 0,01 0 615 0 0

18 515 0,0103 0 586 0,0101 2 615 0,01 1 615 0 0

19 514 0,0103 2 586 0,0101 2 615 0,01 0 615 0 0

20 514 0,0103 1 585 0,0101 4 615 0,01 2 615 0 0

21 513 0,0103 4 585 0,0101 0 615 0,01 1 615 0 0

22 513 0,0103 1 585 0,0101 1 615 0,01 0 615 0 0

23 513 0,0103 0 585 0,0101 1 615 0,01 0 615 0 0

24 512 0,0102 2 584 0,0101 2 615 0,01 1 614 0 0

25 512 0,0102 2 584 0,0101 1 615 0,01 2 614 0 0

26 512 0,0102 1 583 0,01 1 615 0,01 0 614 0 0

27 512 0,0102 0 583 0,01 1 614 0,01 2 614 0 0

28 512 0,0102 0 583 0,01 1 614 0,01 2 614 0 0

29 511 0,0102 2 583 0,01 0 614 0,01 0 614 0 0

30 510 0,0102 2 583 0,01 1 614 0,01 0 614 0 0

31 510 0,0102 1 583 0,01 1 614 0,01 1 614 0 0

32 510 0,0102 1 582 0,01 1 614 0,01 2 614 0 0

33 510 0,0102 1 582 0,01 0 614 0,01 0 614 0 0

34 509 0,0102 0 582 0,01 2 614 0,01 1 614 0 0

35 508 0,0102 2 582 0,01 1 614 0,01 0 614 0 0

36 507 0,0101 0 582 0,01 3 614 0,01 1 614 0 0

37 506 0,0101 2 582 0,01 1 614 0,01 1 613 0 0

38 506 0,0101 2 582 0,01 0 614 0,01 2 613 0 0

39 505 0,0101 3 582 0,01 1 613 0,01 0 613 0 0

40 505 0,0101 2 581 0,01 0 613 0,01 0 613 0 0

41 505 0,0101 1 581 0,01 2 613 0,01 2 613 0 0

42 505 0,0101 0 581 0,01 3 613 0,01 0 613 0 0

43 504 0,0101 2 581 0,01 2 613 0,01 3 613 0 0

44 503 0,0101 1 581 0,01 1 613 0,01 1 613 0 0

45 501 0,01 2 581 0,01 1 613 0,01 2 613 0 0

46 501 0,01 1 581 0,01 1 613 0,01 1 613 0 0

47 501 0,01 1 581 0,01 1 613 0,01 0 612 0 0

48 500 0,01 2 581 0,01 3 613 0,01 1 612 0 0

49 500 0,01 0 580 0,01 0 613 0,01 0 612 0 0

50 499 0,01 2 580 0,01 0 613 0,01 2 612 0 0

51 499 0,01 1 580 0,01 0 613 0,01 1 612 0 0

52 499 0,01 0 580 0,01 0 613 0,01 0 612 0 0

53 499 0,01 0 579 0,01 3 613 0,01 2 612 0 0

54 498 0,01 2 579 0,01 1 613 0,01 0 612 0 0

55 498 0,01 1 579 0,01 2 613 0,01 1 612 0 0

56 498 0,01 1 579 0,01 0 612 0,01 1 612 0 0

57 498 0,01 0 579 0,01 0 612 0,01 1 612 0 0

58 497 0,0099 1 579 0,01 2 612 0,01 2 612 0 0

59 497 0,0099 0 579 0,01 2 612 0,01 0 612 0 0

60 496 0,0099 1 579 0,01 2 612 0,01 3 612 0 0

61 495 0,0099 1 579 0,01 0 612 0,01 1 612 0 0

62 495 0,0099 0 579 0,01 0 612 0,01 2 612 0 0

63 494 0,0099 1 578 0,01 1 612 0,01 0 611 0 0

64 494 0,0099 0 578 0,01 0 612 0,01 1 611 0 0

65 493 0,0099 0 578 0,01 1 612 0,01 4 611 0 0

66 493 0,0099 0 578 0,01 3 612 0,01 1 611 0 0

67 492 0,0098 2 578 0,01 0 611 0,01 0 611 0 0

68 492 0,0098 2 578 0,01 2 611 0,01 1 611 0 0

69 492 0,0098 1 578 0,01 1 611 0,01 0 611 0 0

70 491 0,0098 2 577 0,0099 1 611 0,01 1 611 0 0

71 491 0,0098 1 577 0,0099 0 611 0,01 2 611 0 0

72 491 0,0098 0 577 0,0099 1 611 0,01 3 611 0 0

73 491 0,0098 0 577 0,0099 0 611 0,01 2 611 0 0

74 490 0,0098 0 577 0,0099 1 611 0,01 6 611 0 0

75 489 0,0098 0 577 0,0099 2 611 0,01 0 611 0 0

76 488 0,0098 1 577 0,0099 1 611 0,01 1 611 0 0

77 488 0,0098 0 577 0,0099 1 611 0,01 0 611 0 0

78 488 0,0098 0 577 0,0099 1 611 0,01 0 611 0 0

79 487 0,0097 0 576 0,0099 0 611 0,01 2 611 0 0

80 486 0,0097 2 576 0,0099 1 611 0,01 0 611 0 0

81 485 0,0097 1 575 0,0099 0 610 0,01 2 611 0 0

82 485 0,0097 1 575 0,0099 2 610 0,01 1 611 0 0

83 485 0,0097 1 575 0,0099 3 610 0,01 1 611 0 0

84 483 0,0097 1 575 0,0099 0 610 0,01 0 611 0 0

85 482 0,0096 1 575 0,0099 1 610 0,01 0 611 0 0

86 481 0,0096 0 575 0,0099 0 610 0,01 3 611 0 0

87 478 0,0096 1 575 0,0099 0 610 0,01 0 610 0 0

88 475 0,0095 1 575 0,0099 1 610 0,01 2 610 0 0

89 475 0,0095 0 575 0,0099 1 610 0,01 1 610 0 0

90 474 0,0095 1 574 0,0099 1 609 0,0099 2 610 0 0

91 474 0,0095 1 574 0,0099 1 609 0,0099 0 610 0 0

92 472 0,0094 1 574 0,0099 0 609 0,0099 2 610 0 0

93 471 0,0094 1 574 0,0099 3 609 0,0099 0 610 0 0

94 469 0,0094 1 573 0,0099 0 609 0,0099 0 610 0 0

95 469 0,0094 0 573 0,0099 1 608 0,0099 1 609 0 0

96 468 0,0094 1 572 0,0099 0 607 0,0099 0 609 0 0

97 466 0,0093 0 570 0,0098 1 607 0,0099 1 609 0 0

98 465 0,0093 0 570 0,0098 2 607 0,0099 1 609 0 0

99 458 0,0092 4 570 0,0098 0 607 0,0099 2 609 0 0

100 451 0,009 0 564 0,0097 0 607 0,0099 0 608 0 0

