Practice 1
All One Problem

Made by

5 course student

group I11-10

Artsiom Drapeza (Artyom Drapezo)

Exercise 1

. Create 100 random binary-chromosomes each with 1000 genes.

. Fitness is the number of “1” in one chromosome — the more the better.

. Select 2 chromosomes at random from the better half of the population.
. Create a child chromosome by a one-point-crossover.

. Give the child a mutation with a probability of 1/1000 = 0.001.

. Repeat from 2. to 5. 100 times and create the next generation.

. Repeat 6. until the fitness value does not change any more.

. Show the result:

0O N O U1 B WIN B

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.
(2) Desplay the best and average fitness vs. generation

Code

Constants.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace labl

{

class Constants
{

public static int ginCountInChromosom = 1000;

public static int chromosomCountInPopulation = 100;

Chromosom.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace labl

{

class Chromosom

{
private static Random rng = new Random() ;
private List<bool> gens;

private int fitness;

private double probabilityToBeSelected;

cut));

cut));

private int selectedTimes = 0;

public Chromosom ()

{
gens = new List<bool>();

for (int i = 0; i < Constants.ginCountInChromosom; i++)

{
gens.Add (rng.NextDouble () > 0.5 ? true : false);

}

calculateFitness () ;

public static List<Chromosom> crossover (Chromosom firstParent, Chromosom secondParent)

{

int cut = rng.Next (Constants.ginCountInChromosom - 1) + 1;
Chromosom firstChild = new Chromosom() ;

List<bool> firstChildGins = new List<bool>();

firstChildGins.AddRange (firstParent.getGens () .GetRange (0, cut));

firstChildGins.AddRange (secondParent.getGens () .GetRange (cut,

firstChild.setGens (firstChildGins) ;

Chromosom secondChild = new Chromosom() ;

List<bool> secondChildGins = new List<bool>();
secondChildGins.AddRange (secondParent.getGens () .GetRange (0,
secondChildGins.AddRange (firstParent.getGens () .GetRange (cut,
secondChild.setGens (secondChildGins) ;

List<Chromosom> result = new List<Chromosom> () ;

result.Add (firstChild) ;
result.Add (secondChild) ;

return result;

public int calculateFitness|{()

{

int £ = 0;

for (int i = 0; i < Constants.ginCountInChromosom; i++)
{ f += (gens[i] == true ? 1 : 0);

}

fitness = £;

return f£;

}

public void setGens (List<bool> newGens)

{

gens = newGens;

}

public List<bool> getGens ()
{

return gens;

}

public int getFitness|()
{

return fitness;

}

public void setProbabilityToBeSelected(double newProbability)

{
probabilityToBeSelected = newProbability;

}

public double getProbabilityToBeSelected()

Constants.ginCountInChromosom -

cut));

Constants.ginCountInChromosom -

using
using
using
using
using

return probabilityToBeSelected;

public int getSelectedTimes ()
{

return selectedTimes;

public void selectedTimesPlusOne ()

{

selectedTimes++;

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;

namespace labl

{

class Population

{

private List<Chromosom> chromosoms;
private Random rng = new Random() ;
public Population ()

{

chromosoms = new List<Chromosom> () ;

for (int 1

{

0; 1 < Constants.chromosomCountInPopulation; i++)

chromosoms.Add (new Chromosom()) ;

public List<int> getFitnessList () {
List<int> fitnessList = new List<int>();
for (int i = 0; 1 < Constants.chromosomCountInPopulation; i++)
{ fitnessList.Add (chromosoms[i].calculateFitness());

}

return fitnessList;

public void sortChromosoms ()

{

Population.cs

chromosoms.Sort ((chl, ch2) => chl.calculateFitness () .CompareTo(ch2.calculateFitness()));

public void calcProbabilitiesToBeSelected() {
int fitnessSum = 0;

for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

{

fitnessSum += chromosoms[i].calculateFitness();

for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

{

chromosoms [i] .setProbabilityToBeSelected ((double)chromosoms[i] .getFitness ()

public Population getNextGeneration ()

{
calcProbabilitiesToBeSelected () ;

Population nextGeneration = new Population();

List<Chromosom> nextPopulationChromosoms = new List<Chromosom> () ;

for (int i = 0; i < Constants.chromosomCountInPopulation / 2;

{
double rl = rng.NextDouble();

it+)

/ fitnessSum) ;

double r2 = rng.NextDouble();

while (rl == 0.0 |] rl == 1.0)
{

rl = rng.NextDouble () ;
}

while (r2 == 0.0 || r2 == 1.0)
{

r2 = rng.NextDouble () ;
}

double probabilitySuml = 0;
double probabilitySum2 = 0;

int indexOfTheFirstParent = 0;
int indexOfTheSecondParent = 0;

while (probabilitySuml < rl)

{
probabilitySuml += chromosoms|[indexOfTheFirstParent].getProbabilityToBeSelected() ;
indexOfTheFirstParent++;

}

while (probabilitySum2 < r2)

{
probabilitySum2 += chromosoms|[indexOfTheSecondParent].getProbabilityToBeSelected() ;
indexOfTheSecondParent++;

if (indexOfTheFirstParent >= Constants.chromosomCountInPopulation)
{

indexOfTheFirstParent = Constants.chromosomCountInPopulation - 1;

}

if (indexOfTheSecondParent >= Constants.chromosomCountInPopulation)

{

indexOfTheSecondParent = Constants.chromosomCountInPopulation - 1;

}

nextPopulationChromosoms.AddRange (Chromosom.crossover (chromosoms [indexOfTheFirstParent],
chromosoms [indexOfTheSecondParent])) ;

chromosoms [indexOfTheFirstParent] .selectedTimesPlusOne () ;

chromosoms [indexOfTheSecondParent] .selectedTimesPlusOne () ;

}
nextGeneration.setChromosoms (nextPopulationChromosoms) ;

return nextGeneration;

}

public void setChromosoms (List<Chromosom> newChromosoms)

{

chromosoms = newChromosoms;

}

public List<Chromosom> getChromosoms ()

{

return chromosoms;

}

public int getBestFitness ()
{

int bestFitness = 0;
for (int i = 0; i < Constants.chromosomCountInPopulation; i++)
{
bestFitness = chromosoms[i].calculateFitness () > bestFitness ?
chromosoms[i] .calculateFitness () : bestFitness;

}

return bestFitness;

}

public int getAvarageFitness|()

{

int fitnessSumm = O0;

for (int i = 0; i < Constants.chromosomCountInPopulation; i++)

{

fitnessSumm += chromosoms[i].calculateFitness();

}

return fitnessSumm / Constants.chromosomCountInPopulation;

using System
using System
using System
using System
using System

namespace la

{

class Pr

{
stat

{

System.IO.St

p.getChromos
p.getChromos

Average fitn

System.IO.St

.Collections.Generic;
.Ling;

. Text;
.Threading.Tasks;

bl

ogram

ic void Main(string[] args)

List<int> maxFitnessList = new List<int>();
List<int> averageFitnessList = new List<int>();

Population currentGeneration = new Population();

List<Population> populationsForTable = new List<Population>();
List<int> populationsIndex = new List<int>();

int generationCount = 0;

do
{

maxFitnessList.Add (currentGeneration.getBestFitness());
averageFitnessList.Add (currentGeneration.getAvarageFitness())

currentGeneration = currentGeneration.getNextGeneration();
currentGeneration.sortChromosoms () ;

o)

if (generationCount % 100 == 0)

{

populationsForTable.Add (currentGeneration) ;
populationsIndex.Add (generationCount) ;

generationCount++;
} while (!shallStop (maxFitnessList));

populationsForTable.Add (currentGeneration);
populationsIndex.Add (generationCount) ;

using (System.IO.StreamWriter file = new
reamWriter (@"E:\A WORK\5cource\siit\labl\table.txt"))
{

foreach (int i in populationsIndex)

{
file.Write ("{0}\t", 1);

file.WriteLine () ;

for (int i = 0; 1 < Constants.chromosomCountInPopulation; i++)
{
foreach (Population p in populationsForTable)

{
file.Write(string.Format ("{0}\t{1:0.0000}\t{2}\t",

oms () [1] .getFitness (), p.getChromosoms () [1].getProbabilityToBeSelected(),

oms () [1] .getSelectedTimes ()));
}

file.WriteLine () ;

for(int 1 = 0; 1 < maxFitnessList.Count; i++) {

Console.WritelLine ("Iteration: \t" + 1 4"\t Max fitness: \t" + maxFitnessList[i]

ess \t" + averageFitnessList[i]):;

}

using (System.IO.StreamWriter file = new
reamWriter (@"E:\A WORK\5cource\siit\labl\MaxFitness.txt"))
{

foreach (int fitness in maxFitnessList)

{

file.WritelLine (fitness);

+

Procram.cs

"\t

using (System.IO.StreamWriter file = new
System.IO.StreamWriter (@"E:\A WORK\5cource\siit\labl\AverageFitness.txt"))
{

foreach (int fitness in averageFitnessList)

{

file.WritelLine (fitness);

Console.ReadKey () ;

public static bool shallStop(List<int> maxFitnessList)
{

if (maxFitnessList.Last () == Constants.ginCountInChromosom)
return true;

int checkLast = 10;

if (maxFitnessList.Count > checklLast)

{

int ¢ = 0;

for (int i = 1; 1 < checkLast + 1; i++)
{
if (maxFitnessList[maxFitnessList.Count - 1] > maxFitnessList.Last() -
(Constants.chromosomCountInPopulation * 0.01) && maxFitnessList[maxFitnessList.Count - i] <
maxFitnessList.Last () + (Constants.chromosomCountInPopulation * 0.01))

{

ct++;
return ¢ == checkLast;

return false;

Graphic Fitness(Generation)

100

Generation

Table

Generation 0 100 200 207 last
Probability
Probability to | Selected Probability to | Selected Probability to | Selected to be Selected
Chromosom | Fitness | be selected count Fitness | be selected count Fitness | be selected count Fitness | selected count

1 552 0,011 2 596 0,0103 0 619 0,0101 1 619 0 0

2 540 0,0108 1 594 0,0102 1 617 0,0101 1 619 0 0

3 538 0,0108 1 593 0,0102 0 617 0,0101 1 619 0 0

4 537 0,0107 1 592 0,0102 1 617 0,0101 3 618 0 0

5 528 0,0106 1 592 0,0102 0 617 0,0101 0 617 0 0

6 527 0,0105 0 592 0,0102 1 617 0,0101 1 617 0 0

7 526 0,0105 1 590 0,0102 1 617 0,0101 0 617 0 0

8 525 0,0105 1 590 0,0102 0 616 0,0101 0 617 0 0

9 524 0,0105 1 590 0,0102 0 616 0,0101 0 617 0 0
10 522 0,0104 3 588 0,0101 1 616 0,0101 0 616 0 0
11 522 0,0104 2 588 0,0101 1 616 0,0101 2 616 0 0
12 521 0,0104 1 588 0,0101 0 616 0,0101 1 616 0 0
13 520 0,0104 1 588 0,0101 4 616 0,0101 1 616 0 0
14 520 0,0104 1 588 0,0101 0 616 0,0101 1 615 0 0
15 519 0,0104 1 587 0,0101 0 615 0,01 0 615 0 0
16 518 0,0104 2 586 0,0101 1 615 0,01 0 615 0 0
17 517 0,0103 0 586 0,0101 2 615 0,01 0 615 0 0
18 515 0,0103 0 586 0,0101 2 615 0,01 1 615 0 0
19 514 0,0103 2 586 0,0101 2 615 0,01 0 615 0 0
20 514 0,0103 1 585 0,0101 4 615 0,01 2 615 0 0
21 513 0,0103 4 585 0,0101 0 615 0,01 1 615 0 0
22 513 0,0103 1 585 0,0101 1 615 0,01 0 615 0 0
23 513 0,0103 0 585 0,0101 1 615 0,01 0 615 0 0
24 512 0,0102 2 584 0,0101 2 615 0,01 1 614 0 0
25 512 0,0102 2 584 0,0101 1 615 0,01 2 614 0 0
26 512 0,0102 1 583 0,01 1 615 0,01 0 614 0 0
27 512 0,0102 0 583 0,01 1 614 0,01 2 614 0 0
28 512 0,0102 0 583 0,01 1 614 0,01 2 614 0 0
29 511 0,0102 2 583 0,01 0 614 0,01 0 614 0 0
30 510 0,0102 2 583 0,01 1 614 0,01 0 614 0 0
31 510 0,0102 1 583 0,01 1 614 0,01 1 614 0 0
32 510 0,0102 1 582 0,01 1 614 0,01 2 614 0 0
33 510 0,0102 1 582 0,01 0 614 0,01 0 614 0 0
34 509 0,0102 0 582 0,01 2 614 0,01 1 614 0 0
35 508 0,0102 2 582 0,01 1 614 0,01 0 614 0 0
36 507 0,0101 0 582 0,01 3 614 0,01 1 614 0 0
37 506 0,0101 2 582 0,01 1 614 0,01 1 613 0 0
38 506 0,0101 2 582 0,01 0 614 0,01 2 613 0 0
39 505 0,0101 3 582 0,01 1 613 0,01 0 613 0 0
40 505 0,0101 2 581 0,01 0 613 0,01 0 613 0 0
41 505 0,0101 1 581 0,01 2 613 0,01 2 613 0 0
42 505 0,0101 0 581 0,01 3 613 0,01 0 613 0 0
43 504 0,0101 2 581 0,01 2 613 0,01 3 613 0 0
44 503 0,0101 1 581 0,01 1 613 0,01 1 613 0 0
45 501 0,01 2 581 0,01 1 613 0,01 2 613 0 0
46 501 0,01 1 581 0,01 1 613 0,01 1 613 0 0
47 501 0,01 1 581 0,01 1 613 0,01 0 612 0 0
48 500 0,01 2 581 0,01 3 613 0,01 1 612 0 0
49 500 0,01 0 580 0,01 0 613 0,01 0 612 0 0
50 499 0,01 2 580 0,01 0 613 0,01 2 612 0 0
51 499 0,01 1 580 0,01 0 613 0,01 1 612 0 0
52 499 0,01 0 580 0,01 0 613 0,01 0 612 0 0
53 499 0,01 0 579 0,01 3 613 0,01 2 612 0 0
54 498 0,01 2 579 0,01 1 613 0,01 0 612 0 0
55 498 0,01 1 579 0,01 2 613 0,01 1 612 0 0
56 498 0,01 1 579 0,01 0 612 0,01 1 612 0 0
57 498 0,01 0 579 0,01 0 612 0,01 1 612 0 0
58 497 0,0099 1 579 0,01 2 612 0,01 2 612 0 0
59 497 0,0099 0 579 0,01 2 612 0,01 0 612 0 0
60 496 0,0099 1 579 0,01 2 612 0,01 3 612 0 0
61 495 0,0099 1 579 0,01 0 612 0,01 1 612 0 0
62 495 0,0099 0 579 0,01 0 612 0,01 2 612 0 0
63 494 0,0099 1 578 0,01 1 612 0,01 0 611 0 0
64 494 0,0099 0 578 0,01 0 612 0,01 1 611 0 0
65 493 0,0099 0 578 0,01 1 612 0,01 4 611 0 0

66 493 0,0099 0 578 0,01 3 612 0,01 1 611 0 0
67 492 0,0098 2 578 0,01 0 611 0,01 0 611 0 0
68 492 0,0098 2 578 0,01 2 611 0,01 1 611 0 0
69 492 0,0098 1 578 0,01 1 611 0,01 0 611 0 0
70 491 0,0098 2 577 0,0099 1 611 0,01 1 611 0 0
71 491 0,0098 1 577 0,0099 0 611 0,01 2 611 0 0
72 491 0,0098 0 577 0,0099 1 611 0,01 3 611 0 0
73 491 0,0098 0 577 0,0099 0 611 0,01 2 611 0 0
74 490 0,0098 0 577 0,0099 1 611 0,01 6 611 0 0
75 489 0,0098 0 577 0,0099 2 611 0,01 0 611 0 0
76 488 0,0098 1 577 0,0099 1 611 0,01 1 611 0 0
77 488 0,0098 0 577 0,0099 1 611 0,01 0 611 0 0
78 488 0,0098 0 577 0,0099 1 611 0,01 0 611 0 0
79 487 0,0097 0 576 0,0099 0 611 0,01 2 611 0 0
80 486 0,0097 2 576 0,0099 1 611 0,01 0 611 0 0
81 485 0,0097 1 575 0,0099 0 610 0,01 2 611 0 0
82 485 0,0097 1 575 0,0099 2 610 0,01 1 611 0 0
83 485 0,0097 1 575 0,0099 3 610 0,01 1 611 0 0
84 483 0,0097 1 575 0,0099 0 610 0,01 0 611 0 0
85 482 0,0096 1 575 0,0099 1 610 0,01 0 611 0 0
86 481 0,0096 0 575 0,0099 0 610 0,01 3 611 0 0
87 478 0,0096 1 575 0,0099 0 610 0,01 0 610 0 0
88 475 0,0095 1 575 0,0099 1 610 0,01 2 610 0 0
89 475 0,0095 0 575 0,0099 1 610 0,01 1 610 0 0
90 474 0,0095 1 574 0,0099 1 609 0,0099 2 610 0 0
91 474 0,0095 1 574 0,0099 1 609 0,0099 0 610 0 0
92 472 0,0094 1 574 0,0099 0 609 0,0099 2 610 0 0
93 471 0,0094 1 574 0,0099 3 609 0,0099 0 610 0 0
94 469 0,0094 1 573 0,0099 0 609 0,0099 0 610 0 0
95 469 0,0094 0 573 0,0099 1 608 0,0099 1 609 0 0
96 468 0,0094 1 572 0,0099 0 607 0,0099 0 609 0 0
97 466 0,0093 0 570 0,0098 1 607 0,0099 1 609 0 0
98 465 0,0093 0 570 0,0098 2 607 0,0099 1 609 0 0
99 458 0,0092 4 570 0,0098 0 607 0,0099 2 609 0 0
100 451 0,009 0 564 0,0097 0 607 0,0099 0 608 0 0

