
My program is written on C++. Program performs 500 iterations or it will stop when the average

fitness of the chromosomes do not change for 30 times.

Code:

#include <iostream>
#include <fstream>
#include <vector>
#include <time.h>
#include <algorithm>

using namespace std;

typedef vector<int> Chromosome;
typedef vector<Chromosome> Population;
vector<vector<double>> Table;

Population makePopulation();
int fitness(const Chromosome &chromosome);
bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2);
Population newPopulation(Population population, bool flag);

int main()
{
 srand(time(NULL));
 ofstream file("OutData.txt", ios::out);
 ofstream fileTable("Table.txt", ios::out);

 Population population = makePopulation();
 sort(population.begin(), population.end(), sortPopulation);

 int aver = 0;
 for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)
 {
 if (k % 10 == 0)
 {
 population = newPopulation(population, true);
 }
 else
 {
 population = newPopulation(population, false);
 }
 sort(population.begin(), population.end(), sortPopulation);

 int max = fitness(population[0]);
 if (max == 1000)
 {
 break;
 }

 int average = 0;
 for (int i = 0; i < population.size(); i++)
 {
 average += fitness(population[i]);
 }
 average = average / 100;
 if (average == aver)
 {
 noChanged++;
 }
 else
 {
 noChanged = 0;
 }

 aver = average;

 file << max << "\t" << average << endl;
 }

 for (int j = 0; j < Table[0].size(); j++)
 {
 for (int i = 0; i < Table.size(); i++)
 {
 fileTable << Table[i][j] << "\t\t";
 }
 fileTable << endl;
 }

 file.close();
 fileTable.close();

 system("pause");
 return 0;
}

Population makePopulation()
{
 Population population;
 for (int i = 0; i < 100; i++)
 {
 Chromosome chromosome;
 for (int j = 0; j < 1000; j++)
 {
 chromosome.push_back(rand() % 2);
 }
 population.push_back(chromosome);
 }
 return population;
}

int fitness(const Chromosome &chromosome)
{
 int summ = 0;
 for (int i = 0; i < chromosome.size(); i++)
 {
 summ += chromosome[i];
 }
 return summ;
}

bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2)
{
 return fitness(chromosome1) > fitness(chromosome2);
}

Population newPopulation(Population population, bool flag)
{
 Population result;
 vector<int> fit;
 vector<double> prob;
 vector<int> count(100, 0);

 int summ = 0;
 for (int i = 0; i < population.size(); i++)
 {
 fit.push_back(fitness(population[i]));
 summ += fitness(population[i]);
 }
 for (int i = 0; i < fit.size(); i++)

 {
 double tmp = (double)fit[i] / summ;
 prob.push_back(tmp);
 }

 for (int k = 0; k < 50; k++)
 {
 int tmp = rand() % 8 * 100000 + rand() % 10 * 10000 + rand() % 10 * 1000 +
rand() % 10 * 100 + rand() % 10 * 10 + rand() % 10;
 double val1 = (double)tmp / 1000000;
 double val2 = (double)tmp / 1000000;
 while (val1 == val2)
 {
 tmp = rand() % 8 * 100000 + rand() % 10 * 10000 + rand() % 10 * 1000
+ rand() % 10 * 100 + rand() % 10 * 10 + rand() % 10;
 val2 = (double)tmp / 1000000;
 }

 double summProb = 0.0;
 int parent1, parent2;
 for (int i = 0; i < prob.size(); i++)
 {
 summProb += prob[i];
 if (summProb >= val1)
 {
 parent1 = i;
 count[i] += 1;
 break;
 }
 }
 summProb = 0.0;
 for (int i = 0; i < prob.size(); i++)
 {
 summProb += prob[i];
 if (summProb >= val2)
 {
 parent2 = i;
 count[i] += 1;
 break;
 }
 }

 Chromosome child1 = population[parent1];
 Chromosome child2 = population[parent2];
 int cut = rand() % 1000;
 for (int i = cut; i < 1000; i++)
 {
 child1[i] = population[parent2][i];
 child2[i] = population[parent1][i];
 }
 result.push_back(child1);
 result.push_back(child2);
 }

 if (flag)
 {
 vector<double> fitTable;
 vector<double> probTable;
 vector<double> countTable;
 for (int i = 0; i < fit.size(); i++)
 {
 fitTable.push_back(fit[i]);
 probTable.push_back(prob[i]);
 countTable.push_back(count[i]);
 }

 Table.push_back(fitTable);
 Table.push_back(probTable);
 Table.push_back(countTable);
 }

 return result;
}

After analyzing the results, we see that the algorithm has created a chromosome with 64,6% of

good genes. The maximum and average values are equal, and received for 159 iterations. The

result also depends on the generation of a random initial population.

Graph with the best fitness of the chromosomes:

Graph with the average fitness of the chromosomes:

520

540

560

580

600

620

640

660

0 20 40 60 80 100 120 140 160 180

Maximum fitness

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180

Average fitness

Table with fitness, probability and a how-often-selected

30 iteration 60 iteration 90 iteration 120 iteration 150 iteration

fit prob c fit prob c fit prob c fit prob c fit prob c

598

0.0102

331 2 632

0.01009

71 1 644

0.0100

543 1 646

0.01001

4 0 646 0.01 1

596

0.0101

988 2 631

0.01008

12 3 643

0.0100

387 1 646

0.01001

4 0 646 0.01 1

593

0.0101

475 0 631

0.01008

12 2 642

0.0100

231 3 646

0.01001

4 1 646 0.01 0

593

0.0101

475 1 631

0.01008

12 1 642

0.0100

231 0 646

0.01001

4 1 646 0.01 0

592

0.0101

304 0 631

0.01008

12 0 642

0.0100

231 1 646

0.01001

4 1 646 0.01 1

591

0.0101

133 0 630

0.01006

52 1 642

0.0100

231 2 646

0.01001

4 2 646 0.01 2

591

0.0101

133 2 630

0.01006

52 1 642

0.0100

231 1 646

0.01001

4 3 646 0.01 2

591

0.0101

133 1 630

0.01006

52 1 642

0.0100

231 1 646

0.01001

4 0 646 0.01 0

590

0.0100

962 0 630

0.01006

52 2 642

0.0100

231 4 646

0.01001

4 3 646 0.01 2

590

0.0100

962 2 630

0.01006

52 1 642

0.0100

231 0 646

0.01001

4 2 646 0.01 1

590

0.0100

962 0 630

0.01006

52 2 642

0.0100

231 2 645

0.00999

845 2 646 0.01 1

590

0.0100

962 0 629

0.01004

92 0 642

0.0100

231 0 645

0.00999

845 0 646 0.01 2

590

0.0100

962 2 629

0.01004

92 1 642

0.0100

231 1 645

0.00999

845 1 646 0.01 1

589

0.0100

791 0 629

0.01004

92 0 642

0.0100

231 3 645

0.00999

845 1 646 0.01 0

589

0.0100

791 3 629

0.01004

92 6 642

0.0100

231 1 645

0.00999

845 3 646 0.01 2

588

0.0100

619 0 629

0.01004

92 0 642

0.0100

231 1 645

0.00999

845 1 646 0.01 2

588

0.0100

619 1 629

0.01004

92 1 642

0.0100

231 0 645

0.00999

845 0 646 0.01 4

588

0.0100

619 1 628

0.01003

32 2 642

0.0100

231 1 645

0.00999

845 1 646 0.01 1

588

0.0100

619 0 628

0.01003

32 1 642

0.0100

231 1 645

0.00999

845 3 646 0.01 1

588

0.0100

619 2 628

0.01003

32 4 642

0.0100

231 1 645

0.00999

845 3 646 0.01 3

588

0.0100

619 1 628

0.01003

32 2 642

0.0100

231 1 645

0.00999

845 0 646 0.01 4

588

0.0100

619 3 628

0.01003

32 3 642

0.0100

231 2 645

0.00999

845 1 646 0.01 1

587

0.0100

448 1 628

0.01003

32 1 642

0.0100

231 0 645

0.00999

845 2 646 0.01 2

587

0.0100

448 1 628

0.01003

32 4 642

0.0100

231 2 645

0.00999

845 1 646 0.01 0

587

0.0100

448 2 628

0.01003

32 2 641

0.0100

075 1 645

0.00999

845 2 646 0.01 0

587

0.0100

448 1 627

0.01001

73 1 641

0.0100

075 2 645

0.00999

845 2 646 0.01 1

587

0.0100

448 2 627

0.01001

73 1 641

0.0100

075 1 645

0.00999

845 1 646 0.01 1

587

0.0100

448 1 627

0.01001

73 0 641

0.0100

075 1 645

0.00999

845 0 646 0.01 1

587

0.0100

448 2 627

0.01001

73 2 641

0.0100

075 2 645

0.00999

845 2 646 0.01 2

587

0.0100

448 0 627

0.01001

73 0 641

0.0100

075 0 645

0.00999

845 1 646 0.01 2

587

0.0100

448 1 627

0.01001

73 4 641

0.0100

075 0 645

0.00999

845 0 646 0.01 2

587

0.0100

448 2 627

0.01001

73 1 641

0.0100

075 0 645

0.00999

845 2 646 0.01 0

586

0.0100

277 1 627

0.01001

73 1 641

0.0100

075 3 645

0.00999

845 0 646 0.01 2

586

0.0100

277 1 627

0.01001

73 0 641

0.0100

075 2 645

0.00999

845 1 646 0.01 0

586

0.0100

277 3 627

0.01001

73 0 641

0.0100

075 2 645

0.00999

845 1 646 0.01 1

586

0.0100

277 1 627

0.01001

73 0 641

0.0100

075 0 645

0.00999

845 1 646 0.01 0

586

0.0100

277 2 627

0.01001

73 3 641

0.0100

075 0 645

0.00999

845 1 646 0.01 0

586

0.0100

277 1 627

0.01001

73 1 641

0.0100

075 1 645

0.00999

845 2 646 0.01 0

586

0.0100

277 1 627

0.01001

73 1 641

0.0100

075 3 645

0.00999

845 4 646 0.01 0

586

0.0100

277 0 626

0.01000

13 0 641

0.0100

075 2 645

0.00999

845 0 646 0.01 0

585

0.0100

106 4 626

0.01000

13 2 641

0.0100

075 0 645

0.00999

845 0 646 0.01 1

585

0.0100

106 1 626

0.01000

13 0 641

0.0100

075 1 645

0.00999

845 2 646 0.01 4

585

0.0100

106 1 626

0.01000

13 2 640

0.0099

9188 5 645

0.00999

845 1 646 0.01 1

585

0.0100

106 3 626

0.01000

13 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 2

585

0.0100

106 1 626

0.01000

13 1 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

585

0.0100

106 0 626

0.01000

13 0 640

0.0099

9188 2 645

0.00999

845 1 646 0.01 1

585

0.0100

106 2 626

0.01000

13 0 640

0.0099

9188 1 645

0.00999

845 2 646 0.01 2

585

0.0100

106 1 626

0.01000

13 2 640

0.0099

9188 0 645

0.00999

845 1 646 0.01 0

585

0.0100

106 1 626

0.01000

13 0 640

0.0099

9188 1 645

0.00999

845 1 646 0.01 1

584

0.0099

935 4 626

0.01000

13 0 640

0.0099

9188 0 645

0.00999

845 3 646 0.01 2

584

0.0099

935 0 626

0.01000

13 3 640

0.0099

9188 3 645

0.00999

845 1 646 0.01 2

584

0.0099

935 1 626

0.01000

13 1 640

0.0099

9188 2 645

0.00999

845 0 646 0.01 2

584

0.0099

935 3 626

0.01000

13 0 640

0.0099

9188 1 645

0.00999

845 0 646 0.01 0

584

0.0099

935 0 626

0.01000

13 1 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 1

584

0.0099

935 0 626

0.01000

13 0 640

0.0099

9188 0 645

0.00999

845 2 646 0.01 4

584

0.0099

935 1 626

0.01000

13 2 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 3

584

0.0099

935 1 626

0.01000

13 1 640

0.0099

9188 0 645

0.00999

845 1 646 0.01 1

584

0.0099

935 3 625

0.00998

53 0 640

0.0099

9188 1 645

0.00999

845 0 646 0.01 2

584

0.0099

935 1 625

0.00998

53 1 640

0.0099

9188 0 645

0.00999

845 1 646 0.01 3

584

0.0099

935 1 625

0.00998

53 0 640

0.0099

9188 2 645

0.00999

845 2 646 0.01 0

583

0.0099

7639 1 625

0.00998

53 1 640

0.0099

9188 0 645

0.00999

845 2 646 0.01 1

583

0.0099

7639 2 625

0.00998

53 1 640

0.0099

9188 1 645

0.00999

845 2 646 0.01 0

583

0.0099

7639 0 625

0.00998

53 1 640

0.0099

9188 0 645

0.00999

845 2 646 0.01 0

583

0.0099

7639 0 625

0.00998

53 1 640

0.0099

9188 3 645

0.00999

845 0 646 0.01 0

583

0.0099

7639 2 625

0.00998

53 2 640

0.0099

9188 3 645

0.00999

845 3 646 0.01 2

583

0.0099

7639 1 625

0.00998

53 1 640

0.0099

9188 2 645

0.00999

845 4 646 0.01 1

583

0.0099

7639 3 625

0.00998

53 2 640

0.0099

9188 1 645

0.00999

845 1 646 0.01 0

583

0.0099

7639 1 625

0.00998

53 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 3

582

0.0099

5927 3 625

0.00998

53 4 640

0.0099

9188 2 645

0.00999

845 0 646 0.01 0

582

0.0099

5927 3 625

0.00998

53 3 640

0.0099

9188 4 645

0.00999

845 0 646 0.01 5

582

0.0099

5927 0 625

0.00998

53 1 640

0.0099

9188 1 645

0.00999

845 3 646 0.01 1

582

0.0099

5927 3 624

0.00996

933 2 640

0.0099

9188 2 645

0.00999

845 1 646 0.01 0

582

0.0099

5927 3 624

0.00996

933 1 640

0.0099

9188 2 645

0.00999

845 1 646 0.01 2

582

0.0099

5927 0 624

0.00996

933 2 640

0.0099

9188 1 645

0.00999

845 1 646 0.01 0

582

0.0099

5927 1 624

0.00996

933 1 640

0.0099

9188 2 645

0.00999

845 1 646 0.01 1

582

0.0099

5927 1 624

0.00996

933 1 640

0.0099

9188 0 645

0.00999

845 2 646 0.01 1

581

0.0099

4216 0 624

0.00996

933 1 640

0.0099

9188 2 645

0.00999

845 2 646 0.01 2

581

0.0099

4216 0 624

0.00996

933 0 640

0.0099

9188 3 645

0.00999

845 2 646 0.01 1

581

0.0099

4216 1 624

0.00996

933 1 640

0.0099

9188 1 645

0.00999

845 1 646 0.01 1

581

0.0099

4216 0 624

0.00996

933 1 640

0.0099

9188 1 645

0.00999

845 2 646 0.01 1

580

0.0099

2505 0 623

0.00995

335 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

580

0.0099

2505 0 623

0.00995

335 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

580

0.0099

2505 0 623

0.00995

335 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

580

0.0099

2505 0 623

0.00995

335 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

580

0.0099

2505 0 623

0.00995

335 0 640

0.0099

9188 0 645

0.00999

845 0 646 0.01 0

579

0.0099

0794 0 623

0.00995

335 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

579

0.0099

0794 0 623

0.00995

335 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

579

0.0099

0794 0 623

0.00995

335 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

579

0.0099

0794 0 623

0.00995

335 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

579

0.0099

0794 0 623

0.00995

335 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

578

0.0098

9082 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

578

0.0098

9082 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

577

0.0098

7371 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

577

0.0098

7371 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

576

0.0098

566 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

576

0.0098

566 0 622

0.00993

737 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

576

0.0098

566 0 621

0.00992

14 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

576

0.0098

566 0 621

0.00992

14 0 639

0.0099

7627 0 645

0.00999

845 0 646 0.01 0

576

0.0098

566 0 621

0.00992

14 0 638

0.0099

6066 0 645

0.00999

845 0 646 0.01 0

573

0.0098

0526 0 621

0.00992

14 0 638

0.0099

6066 0 645

0.00999

845 0 646 0.01 0

