Oksana Zanko
Task 1
We have the initial population with100 binary chromosomes with 1000 genes. The fitness is the number of “1” is good, “0”
is bad. We need to get gene which consists all “1”.
Algorithm:

Create 100 binary-chromosomes at random where each chromosome contains 1000 gens.
Select two chromosomes at random from the better half of the population of 100 chromosomes.

3. Create a child chromosome by a crossover. Compare two performances one with one-point-crossover and the other with
uniform-crossover.

4. Randomly determine the number. If this number(A) is less than 100, we find the number(B) with number(A) and if
number(A) is “1”, we change on “0”.

N =

5. Pick the best chromosome (where fitness is higher).
6. Repeat steps 2-5, until we get new population.
7. If there is a chromosome with all “1”, gens in population then stop. Otherwise repeat steps 2-6
1 10 90
ITER.
FITNESS | PROBILITY CHOICE | FITNESS | PROBILITY | CHOICE FITNESS | PROBILITY | cHOICE [ERENSSSIRT o= [Ny A ANe Tolle 2
0 541 0.010813296 | 5 594 0.010115 |5 713 0.010111 | 4 713 0.010101
1 535 0.01069337 |5 591 0.01007 |5 713 0.010111 | 4 713 0.010101
2 532 0.010633407 | 4 591 0.010587 | 3 713 0.010111 | 3 713 0.010101
3 529 0.010573444 | 4 590 0.010534 | 3 713 0.010111 | 5 713 0.010101
4 529 0.010573444 | 4 590 0.010534 | 4 713 0.010111 | 5 713 0.010101
5 524 0.010473506 | 3 585 0.010516 |5 713 0.010111 | 5 713 0.010101

6 523 0.010453519 585 0.010516
7 522 0.010433531 585 0.010427
8 522 0.010433531 584 0.010427
9 522 0.010433531 583 0.010427
10 521 0.010413544 583 0.010409
11 521 0.010413544 580 0.010391
12 520 0.010393556 580 0.010391
13 520 0.010393556 580 0.010338
14 520 0.010393556 580 0.010338
15 519 0.010373568 577 0.010338
16 517 0.010333593 577 0.010338
17 517 0.010333593 577 0.010284
18 516 0.010313606 577 0.010284
19 516 0.010313606 577 0.010284
20 516 0.010313606 577 0.010284
21 515 0.010293618 576 0.010284
22 515 0.010293618 575 0.010284
23 513 0.010253643 575 0.010284

713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
713 0.010111
712 0.010110
712 0.010110
712 0.010110

0.010101
0.010101
0.010101

10010101

0.010101

0.010101

0.010101

0.010101

10010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

24 512 0.010233655 574 0.010284 | 4
25 512 0.010233655 573 0.010284 |1
26 512 0.010233655 573 0.010266 | O
27 510 0.01019368 573 0.010266 | 2
28 510 0.01019368 572 0.010266 | 2
29 510 0.01019368 572 0.010248 | 22
30 510 0.01019368 571 0.010248 | 3
31 509 0.010173692 571 0.010248 | 1
32 508 0.010153705 571 0.010248 | 1
33 508 0.010153705 570 0.010231 | 1
34 508 0.010153705 570 0.010231 | O
35 507 0.010133717 570 0.010231 | O
36 507 0.010133717 569 0.010231 | O
37 507 0.010133717 569 0.010231 | O
38 506 0.010113729 569 0.010213 | O
39 506 0.010113729 568 0.010213 | 3
40 505 0.010093742 568 0.010213 | 1
41 505 0.010093742 568 0.010213 | 1

712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110

0.010101
0.010101
0.010101

10010101

0.010101

0.010101

0.010101

0.010101

10010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

42 504 0.010073754 567 0.010213
43 504 0.010073754 567 0.010213
44 503 0.010053767 567 0.010213
45 501 0.010013791 566 0.010213
46 501 0.010013791 565 0.010213
a7 500 0.009993804 564 0.010195
48 500 0.009993804 564 0.010195
49 500 0.009993804 564 0.010195
50 500 0.009993804 563 0.010195
51 499 0.009973816 561 0.010195
52 498 0.009953829 561 0.010195
53 498 0.009953829 561 0.009999
54 497 0.009933841 561 0.009999
55 497 0.009933841 561 0.009999
56 496 0.009913853 561 0.009999
57 496 0.009913853 561 0.009999
58 496 0.009913853 561 0.009999
59 496 0.009913853 561 0.009999

712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110

0.010101
0.010101
0.010101

10010101

0.010101

0.010101

0.010101

0.010101

10010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

60 495 0.009893866 561 0.009999
61 495 0.009893866 560 0.009999
62 495 0.009893866 560 0.009999
63 495 0.009893866 560 0.009981
64 494 0.009873878 560 0.009981
65 493 0.009853891 560 0.009981
66 493 0.009853891 560 0.009981
67 493 0.009853891 560 0.009981
68 492 0.009833903 560 0.009981
69 492 0.009833903 560 0.009981
70 492 0.009833903 559 0.009981
71 491 0.009813915 559 0.009981
72 491 0.009813915 559 0.009963
73 491 0.009813915 559 0.009963
74 489 0.00977394 558 0.009963
75 489 0.00977394 558 0.009963
76 488 0.009753953 558 0.009945

712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110

0.010101
0.010101
0.010101

10010101

0.010101

0.010101

0.010101

0.010101

10010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

77 488 0.009753953 558 0.009945
78 488 0.009753953 558 0.009945
79 488 0.009753953 558 0.009945
80 488 0.009753953 557 0.009945
81 487 0.009733965 557 0.009945
82 486 0.009713977 557 0.009928
83 485 0.00969399 556 0.009928
84 484 0.009674002 556 0.009928
85 484 0.009674002 556 0.00991

86 483 0.009654015 555 0.00991

87 483 0.009654015 555 0.00991

88 479 0.009574064 555 0.009892
89 474 0.009474126 555 0.009892
90 474 0.009474126 555 0.009892
91 474 0.009474126 554 0.009892
92 474 0.009474126 553 0.009892
93 474 0.009474126 553 0.009874
94 471 0.009414163 553 0.009856

712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110
712 0.010110

0.010101
0.010101
0.010101

10010101

0.010101

0.010101

0.010101

0.010101

10010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

0.010101

95

0.009414163

0.009856

96

0.009394176

0.009856

0.010110

97

0.009374188

0.009856

0.010110

98

0.0093542

0.009856

0.010110

99

0.009154324

0.009856

0.010110

Average

0.010110

713 0.010101
713 0.010101
713 0.010101
713 0.010101

713 0.010101

713 --

Task 1

750

700

650 -

600 -
Average Best

Fitness

550 +

500 -

450 ~

400 T T T T T 1
0] 20 40 60 80 100 120

Iteration

The best fitness chromosome in the 1% generation is 541, in the 10" — 552, and in the 100" - generation 713.
Since 90 iteration, there is no improvement of chromosomes because we achieved the best result after crossing all possible
parents!

0=>{
"use strict™;

const populationCount = 100,genSize = 1000, itterationsCount = 100;

let generation = generateGeneration(populationCount, genSize),itterationNum = 0;
for (let i = 0; ++i < itterationsCount;)

{
generation = generation.sort((genl, gen2)
{
return calcOnes(gen2) - calcOnes(genl);
b

logGeneration(generation);
generation = nextGeneration(generation);

logGeneration(generation);
return;
function generateGeneration(count, size)
{
let generation =[];
for (let i = -1; ++i < count;)
{
let gen = [];
for (let j = -1; ++j < size;)
{
gen.push(getRandomBinary());

generation.push(gen);
}

return generation;

function calcOnes(gen)

{
let count = 0;
for (let i = -1; ++i < gen.length;)
if (gen[i]) count++;
return count;
}
function nextGeneration(parentGeneration)
{

let repeatCount = populationCount / 2,
newGeneration = [];
for (let i = 0; ++i < populationCount;) {
let firstindex = getRandomInt(0, populationCount),

secondIndex = getRandomInt(0, populationCount);
document.write(firstindex + " " + secondIndex + " |);

newGeneration.push(...crossover(parentGeneration[firstindex],

parentGeneration[secondIndex]));

}

return newGeneration;

}

function crossover(firstParent, secondParent)

let crossindex = getRandomint(1, firstParent.length);
let firstPartFirst = firstParent.slice(0, crossindex),secondPartFirst = firstParent.slice(crossindex, firstParent.length),firstPartSecond = secondParent.slice(0, crossindex),secondPartSecond =
secondParent.slice(crossindex, secondParent.length);
return [firstPartFirst.concat(secondPartSecond),
firstPartSecond.concat(secondPartFirst)];
}
function getRandomBinary(min, max) {
return Math.round(Math.random());
}

function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min)) + min;

function bestCh (generation) {
let best = calcOnes(generation[0]); ;
for (leti = 1; i < generation.length; i++) {
if (calcOnes(generation[i])>best) best = calcOnes(generation[i]);
}

return best;
}
function logGeneration(generation) {
let average = 0;
let allsum=0;
let onlyOnes=0;
let onlyOnesCh=0;
for (let i = 0; i < generation.length; i++) allsum +=calcOnes(generation[i]);
for (let i = 0; i < generation.length; i++)

{
onlyOnes=calcOnes(generation[i]);
onlyOnesCh=onlyOnes/allsum;
document.write(onlyOnes+"|"+ onlyOnesCh + '
");
}

average = Math.floor(allsum / generation.length);
document.write("Average "+average + '
");
document.write("Best" + bestCh(generation)+'
");

HO0:

