
DENIS RAMSKIY
Group - II-11

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace GenApp
{
 public class Gen
 {
 public List<int> hromosom;
 public int fitnes;
 public double propability;
 static Random rnd;

 public Gen()
 {
 rnd = new Random((int)DateTime.Now.TimeOfDay.Milliseconds);

 hromosom = new List<int>();
 for (int i = 0; i < 1000; i++)
 {
 int nimber=(rnd.Next(i))%2;
 hromosom.Add(nimber);
 if (nimber == 1)
 fitnes++;
 }
 }
 public static Gen operator +(Gen arg1, Gen arg2)
 {
 for (int i = 0; i < 1000; i++)
 arg1.hromosom[i] = arg2.hromosom[i];
 return arg1;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace GenApp
{
 class Generation
 {
 List<Gen> temp_generation;
 public int general_fitnes;

 public Generation()
 {
 temp_generation = new List<Gen>();
 for (int i = 0; i < 100; i++)
 {
 Gen temp = new Gen();
 temp_generation.Add(temp);
 general_fitnes += temp.fitnes;
 }
 }

 public void sort()

 {
 for(int i=0;i<100;i++)
 for(int j=0;j<99;j++)
 if (temp_generation[j].fitnes < temp_generation[j + 1].fitnes)
 {
 Gen temp = new Gen();
 temp += temp_generation[j];
 temp_generation[j] += temp_generation[j + 1];
 temp_generation[j + 1] += temp;
 }
 }

 public void prop_gen()
 {
 for (int i = 0; i < 100; i++)
 temp_generation[i].propability =(double) temp_generation[i].fitnes /
general_fitnes;
 }

 public void next_gen()
 {
 List<Gen> new_generation=new List<Gen>();
 Random rnd = new Random((int)DateTime.Now.Ticks);
 List<Gen> per=new List<Gen>();

 for (int i = 0; i < 100; i++)
 {
 for (int j = 0; j < 50; j++)
 {
 if (temp_generation[j].fitnes >= rnd.NextDouble())
 per.Add(temp_generation[j]);
 if (per.Count == 2)
 break;
 }

 Gen rebonok = new Gen();
 for (int j = 0; j < 1000; j++)
 if (rnd.Next()%2 == 1)
 rebonok.hromosom[j] = per[0].hromosom[j];
 else
 rebonok.hromosom[j] = per[1].hromosom[j];

 new_generation.Add(rebonok);
 }

 for (int i = 0; i < 100; i++)
 temp_generation[i] += new_generation[i];
 }
 }
}

MAIN CLASS
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace GenApp
{
 class Program
 {
 static void Main(string[] args)
 {

 Generation mu_generation = new Generation();

 while (true)
 {
 mu_generation.prop_gen();
 mu_generation.sort();
 mu_generation.next_gen();
 Console.WriteLine(mu_generation.general_fitnes);
 }
 }
 }
}

