
1 exercise – Zhenya Semenyuk
Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of “1” in one chromosome – the more the better.
3. Select 2 chromosomes by roulette method
4. Create a child chromosome by a uniform-crossover.
5. Repeat from 2. to 5. 100 times and create the next generation.
6. Repeat 6. until the fitness value does not change any more.

Souce Code
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static Genetic.Constants; namespace Genetic { public static class Constants { public const int CHROMOSOMES_NUMBER = 100; public const int GENES_NUMBER = 1000; public const int GENERATIONS_NUMBER = 1000; public const int FINTESS_CHANGE_NUMBER = 100; public const int MUTATION = 10000; public const int MUTATION_BORDER = 10; } }
namespace Genetic { public class Chromosome : IComparable<Chromosome> { public List<int> Genes { get; set; } public double Fitness { get; set; } public double Probability { get; set; } readonly Random _rnd; public Chromosome(Random rnd) { _rnd = rnd; Genes = new List<int>(); for (int i = 0; i < GENES_NUMBER; i++) Genes.Add(_rnd.Next(2)); Fitness = Genes.Sum(); } public int CompareTo(Chromosome compareChromosome) { if (compareChromosome == null) return -1; else return compareChromosome.Fitness.CompareTo(Fitness); } public Chromosome CreateChild(Chromosome parent2) {

 int chooseParent; Chromosome child = new Chromosome(_rnd); child.Genes.Clear(); for(int i = 0; i < GENES_NUMBER; i++) { chooseParent = _rnd.Next(2); if (chooseParent == 1) child.Genes.Add(Genes.ElementAt(i)); else child.Genes.Add(parent2.Genes.ElementAt(i)); } child.Fitness = child.Genes.Sum(); return child; } } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static Genetic.Constants; namespace Genetic { class Program { static void Main(string[] args) { List<Chromosome> chromosomes = new List<Chromosome>(); List<Chromosome> childChromosomes = new List<Chromosome>(); int generationCount = 0; // increment if fitness hasn't change int fitnessChangeCount = 0; double parentsFitness, childsFitness; // double motherProbability, FatherProbability; int i; Random rnd = new Random(DateTime.Now.TimeOfDay.Milliseconds); //1-st generation for (i = 0; i < CHROMOSOMES_NUMBER; i++) chromosomes.Add(new Chromosome(rnd)); double fitnessSumm = chromosomes.Select(x => x.Fitness).Sum(); foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; chromosomes.Sort(); //1-st generation Console.WriteLine("Calculating..."); Chromosome mother, father; while (generationCount != GENERATIONS_NUMBER) { //if (fitnessChangeCount > FINTESS_CHANGE_NUMBER) // break;

 chromosomes.Sort(); parentsFitness = chromosomes.Average(x => x.Fitness); if (generationCount % 100 == 0) Console.WriteLine($"Generation {generationCount}: - Average fitness: {parentsFitness}"); //create child from 2 parents and add to the population 100 times for (i = 0; i < CHROMOSOMES_NUMBER; i++) { //roulette mother = ChooseParent(chromosomes, rnd); father = ChooseParent(chromosomes, rnd); childChromosomes.Add(father.CreateChild(mother)); //truncate method //childChromosomes.Add(chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2)) // .CreateChild(chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2)))); } childsFitness = childChromosomes.Average(x => x.Fitness); if ((int)childsFitness == (int)parentsFitness) fitnessChangeCount++; chromosomes.Clear(); chromosomes.AddRange(childChromosomes); childChromosomes.Clear(); fitnessSumm = chromosomes.Select(x => x.Fitness).Sum(); foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; generationCount++; } } public static Chromosome ChooseParent(List<Chromosome> chromosomes, Random rnd) { double probabilitySum, parentProbability; Chromosome parent = null; probabilitySum = 0.0; parentProbability = rnd.NextDouble(); for (int j = 0; j < GENES_NUMBER; j++) { if (probabilitySum < parentProbability) probabilitySum += chromosomes.ElementAt(j).Probability; else { parent = chromosomes.ElementAt(j - 1); break; } } return parent; } } }

0
100
200
300
400
500
600
700
800
900

1000

0 50 100 150 200

Truncate method

495
500
505
510
515
520
525
530
535
540

0 200 400 600 800 1000

Roulette method

