
Student: Kirill Tsibikov

1. All One Problem

Brest 2016

Exercise 1

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome – the more the better.

3. Select 2 chromosomes at random from the better half of the population.

4. Create a child chromosome by a onr-point-crossover.

5. Give the child a mutation with a probability of 1/1000 = 0.001.

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value does not change any more.

8. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.

(2) Desplay the best and average fitness vs. generation.

460

480

500

520

540

560

580

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3

3
6

1

3
7

9

3
9

7

4
1

5

4
3

3

4
5

1

4
6

9

4
8

7

5
0

5

5
2

3

5
4

1

5
5

9

5
7

7

5
9

5

6
1

3

6
3

1

6
4

9

FI
TN

ES
S

POPULATION NUMBER

Roulette Wheel Selection

AVG BEST

Exercise 2

Show for the 1-st, middle and for the last generation, the number of selection for

each chromosome for Roulette Selection.

The 0 population

The 500
population

The 800

population

Chro
mosome
number

N
umber of
selections

 Сhro
mosome
number

N
umber of
selections

 Chro
mosome
number

N
umber of
selections

1 2 1 4 1 2

2 1 2 0 2 3

3 2 3 3 3 2

4 1 4 1 4 2

5 1 5 1 5 3

6 1 6 2 6 4

7 3 7 1 7 2

8 0 8 2 8 3

9 3 9 1 9 4

10 1 10 1 10 2

11 0 11 3 11 1

12 2 12 2 12 3

13 4 13 2 13 1

14 2 14 2 14 2

15 4 15 1 15 0

16 2 16 3 16 2

17 0 17 4 17 1

0

100

200

300

400

500

600

700

800

900

1000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

2
5

3

2
6

2

2
7

1

2
8

0

2
8

9

2
9

8

3
0

7

FI
TN

ES
S

POPULATION NUMBER

Truncating Selection

AVG BEST

18 2 18 0 18 2

19 0 19 0 19 1

20 1 20 3 20 2

21 1 21 0 21 3

22 1 22 2 22 2

23 3 23 2 23 1

24 3 24 4 24 2

25 1 25 0 25 2

26 1 26 3 26 1

27 0 27 3 27 0

28 3 28 3 28 1

29 4 29 0 29 2

30 5 30 0 30 3

31 0 31 1 31 3

32 2 32 5 32 2

33 4 33 1 33 1

34 2 34 0 34 0

35 3 35 1 35 1

36 5 36 3 36 1

37 2 37 3 37 0

38 1 38 1 38 4

39 3 39 1 39 1

40 4 40 3 40 1

41 3 41 1 41 0

42 2 42 3 42 2

43 4 43 4 43 1

44 1 44 3 44 1

45 3 45 1 45 0

46 1 46 0 46 1

47 1 47 3 47 0

48 5 48 2 48 1

49 0 49 1 49 2

50 3 50 1 50 4

51 4 51 2 51 1

52 4 52 3 52 2

53 2 53 1 53 5

54 1 54 1 54 2

55 2 55 2 55 3

56 1 56 1 56 4

57 2 57 4 57 1

58 1 58 1 58 2

59 0 59 4 59 1

60 1 60 4 60 3

61 4 61 1 61 2

62 0 62 3 62 3

63 1 63 4 63 1

64 1 64 3 64 3

65 2 65 1 65 4

66 3 66 2 66 3

67 3 67 2 67 2

68 3 68 5 68 2

69 0 69 1 69 2

70 1 70 2 70 4

71 2 71 1 71 2

72 2 72 2 72 0

73 2 73 1 73 1

74 5 74 2 74 3

75 0 75 4 75 3

76 4 76 2 76 1

77 1 77 0 77 3

78 1 78 3 78 3

79 4 79 1 79 2

80 3 80 1 80 2

81 3 81 5 81 1

82 2 82 1 82 2

83 3 83 0 83 0

84 1 84 1 84 2

85 1 85 0 85 2

86 0 86 2 86 3

87 3 87 4 87 2

88 2 88 3 88 3

89 3 89 3 89 3

90 1 90 3 90 0

91 3 91 1 91 4

92 3 92 1 92 2

93 2 93 1 93 5

94 1 94 6 94 1

95 2 95 4 95 4

96 0 96 1 96 5

97 2 97 2 97 1

98 1 98 2 98 2

99 1 99 2 99 0

100 3 100 3 100 3

Listing

package javaapplication1;

import java.util.Map;

import java.util.Random;

class GeneticAlgo{

 boolean[][] popln;

 public enum SelectionType {

 TOURNEY, ROULETTE_WHEEL, TRUNCATING

}

 public enum CrossingType {

 ONE_POINT_RECOMBINATION, TWO_POINT_RECOMBINATION,

ELEMENTWISE_RECOMBINATION, ONE_ELEMENT_EXCHANGE

}

 private SelectionType slctp;

 private CrossingType crstp;

 private int genomLength; //Длина генома в битах

 private int generationCount; //Кол-во поколений

 private int individualCount; //Кол-во

Геномов(Индивидов,Особей) в поколении

 private int[] chosenchromosom;

 private SelectionType selectionType; //Тип Селекции

 private CrossingType crossingType; //Тип Скрещивания

 public GeneticAlgo(String s, String c){

 slctp=SelectionType.valueOf(s);

 crstp =CrossingType.valueOf(c);

 popln=new boolean[100][1000];

 genomLength=1000;

 generationCount=100;

 individualCount=100;

 chosenchromosom=new int[100];

 }

 public boolean[][] run(){

 this.generateFirstGeneration();

 float ftnsmax=0;

 for(int i=0; i<100000000; i++)

 {

 this.selection();

 for(int j=0; j<100; j++)

 {

 ftnsmax=(ftnsmax<=fitnes(j))?fitnes(j):ftnsmax;

 }

// System.out.print(avgfitnes());

// System.out.print(":");

// System.out.print(ftnsmax);

// System.out.println();

 if(i==0||i==500||i==800)

 {

 System.out.println("The " + i + " population");

 for(int j=0; j<100; j++)

 {

 System.out.print(j+1);

 System.out.print(":");

 System.out.print(this.chosenchromosom[j]);

 System.out.println();

 }

 }

 if(ftnsmax==1000)break;

 }

 return (new boolean[100][1000]);

 }

 private void generateFirstGeneration() {

 Random rnd=new Random();

 for(int i=0; i<100; i++)

 {

 for(int j=0; j<1000; j++)

 {

 popln[i][j]=rnd.nextBoolean();

 }

 }

 } //генерация первого поколения

 private void selection(){

 boolean[][] genomListOffsprings=new boolean[100][1000];

 Random rndd=new Random();

 switch(this.slctp)

 {

 case ROULETTE_WHEEL:{

 float[] wheel = new float[this.individualCount];

 wheel[0] = fitnes(0);//Значение ФитнессФункции для 1-

ого генома

 this.chosenchromosom[0]=0;

 for (int i=1;i<this.individualCount;i++){

 wheel[i] = wheel[i-1] + fitnes(i);//Значение

ФитнессФункции для i-ого генома

 this.chosenchromosom[i]=0;

 }

 float all = wheel[this.individualCount-1];

 for (int i=0;i<this.individualCount;i++){

 float index = Math.abs(rndd.nextFloat())*all;

 int l = 0;

 int r = individualCount-1;

 int c = 0;

 while (l < r){

 c = (l+r) >> 1;

 if (index <= wheel[c])

 r = c;

 else

 l = c + 1;

 }

 int a=l;

 index = Math.abs(rndd.nextFloat())*all;

 l = 0;

 r = individualCount-1;

 c = 0;

 while (l < r){

 c = (l+r) >> 1;

 if (index <= wheel[c])

 r = c;

 else

 l = c + 1;

 }

 this.chosenchromosom[l]++;

 this.chosenchromosom[a]++;

 genomListOffsprings[i] = this.crossing(l,a);

 }

 popln=genomListOffsprings;

 break;

 }

 case TOURNEY:

 {

 for (int i=0;i<this.individualCount;i++){

 int index1 = rndd.nextInt(individualCount);

 int index2 = rndd.nextInt(individualCount);

 int index3 = rndd.nextInt(individualCount);

 int index4 = rndd.nextInt(individualCount);

 float fr1 = fitnes(index1);

 float fr2 = fitnes(index2);

 index1=(fr1>fr2)?index1:index2;

 float fr3 = fitnes(index3);

 float fr4 = fitnes(index4);

 index2=(fr3>fr4)?index3:index4;

 genomListOffsprings[i] =

this.crossing(index1, index2);

 }

 popln=genomListOffsprings;

 break;

 }

 case TRUNCATING:

 {

 int percent=(Math.abs(rndd.nextInt())+10)%50+1;

 this.sort();

 for(int i=0; i<this.individualCount; i++)

 {

 genomListOffsprings[i] =

this.crossing((Math.abs(rndd.nextInt()))%50,(Math.abs(rndd.nextInt()))

%50);

 }

 popln=genomListOffsprings;

 break;

 }

 default:

 break;

 }

 } //Процедура селекци

 private boolean[] crossing(int a, int b) {

 boolean[] vec=new boolean[1000];

 switch(crstp)

 {

 case ONE_POINT_RECOMBINATION:

 {

 for(int i=0; i<genomLength; i++)

 {

 Random rndd=new Random();

vec[i]=(rndd.nextBoolean())?popln[b][i]:popln[a][i];

 }

 break;

 }

 default:

 break;

 }

 return vec;

 } //Процедура скрещивания

 private float fitnes(int nomber){

 float ftns=0.f;

 for(int j=0; j<genomLength; j++)

 {

 ftns+=(this.popln[nomber][j])?1:0;

 }

 return ftns;

 } //Фитнес функция

 private float avgfitnes(){

 float ftns=0.f;

 for(int i=0; i<100; i++)

 for(int j=0; j<genomLength; j++)

 {

 ftns+=(this.popln[i][j])?1:0;

 }

 return ftns/100;

 } //Фитнес функция

 private void sort()

 {

 for(int i=0; i<this.individualCount; i++)

 {

 boolean[] amiba;

 amiba = new boolean[1000];

 amiba=popln[i];

 double fit=fitnes(i);

 for(int j=i; j<this.individualCount; j++)

 {

 if(fitnes(j)>fit){

 fit=fitnes(j);

 amiba=popln[j];

 popln[j]=popln[i];

 popln[i]=amiba;

 }

 }

 }

 }

}

public class JavaApplication1 {

 public static void main(String[] args) {

 GeneticAlgo p=new

GeneticAlgo("ROULETTE_WHEEL","ONE_POINT_RECOMBINATION");

 p.run();

 }

}

