
1 exercise – Roman Rudski

Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome – the more the better.

 3. Select 2 chromosomes by roulette method

4. Create a child chromosome by a uniform-crossover.

5. Repeat from 2. to 5. 100 times and create the next generation.

6. Repeat 6. until the fitness value does not change any more.
using System;

using System.Collections.Generic;

using System.Linq;

 using System.Text;

using System.Threading.Tasks;

 using static Genetic.Constants;

 namespace Genetic {

public static class Constants {

public const int CHROM= 100;

 public const int GENES = 1000;

public const int GENERAT = 1000;

public const int FINTESS = 100;

public const int MUT = 10000;

public const int MUTATION = 10;

} }

namespace Genetic {

public class Chromosome : IComparable {

 public List Genes { get; set; }

 public double Fitness { get; set; }

 public double Probability { get; set; }

 //for roulette method

public int Count { get; set; }

readonly Random _rnd;

public Chromosome(Random rnd) { _rnd = rnd; Genes = new List();

 for (int i = 0; i < GENES_NUMBER; i++)

 Genes.Add(_rnd.Next(2));

 Fitness = Genes.Sum();

 } public int CompareTo(Chromosome compareChromosome)

 { if (compareChromosome == null) return -1;

else return compareChromosome.Fitness.CompareTo(Fitness); }

 public Chromosome CreateChild(Chromosome parent2)

{ int chooseParent; Chromosome child = new Chromosome(_rnd);

child.Genes.Clear();

for(int i = 0; i < GENES_NUMBER; i++)

{ chooseParent = _rnd.Next(2);

if (chooseParent == 1) child.Genes.Add(Genes.ElementAt(i));

 else child.Genes.Add(parent2.Genes.ElementAt(i)); }

 child.Fitness = child.Genes.Sum(); return child; } } }

 using System;

using System.Collections.Generic;

using System.Linq;

 using System.Text;

 using System.Threading.Tasks;

 using static Genetic.Constants;

namespace Genetic {

class Program { static void Main(string[] args) { List chromosomes = new List();

List childChromosomes = new List();

 int generationCount = 0; // increment if fitness hasn't change

int fitnessChangeCount = 0;

 double parentsFitness, childsFitness;

int i;

 Random rnd = new Random(DateTime.Now.TimeOfDay.Milliseconds);

//1-st generation

for (i = 0; i < CHROMOSOMES_NUMBER; i++)

 chromosomes.Add(new Chromosome(rnd));

double fitnessSumm = chromosomes.Select(x => x.Fitness).Sum();

foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; chromosomes.Sort();

 //1-st generation

Console.WriteLine("Calculating...");

Chromosome mother, father;

while (generationCount != GENERATIONS_NUMBER) {

chromosomes.Sort();

parentsFitness = chromosomes.Average(x => x.Fitness);

 if (generationCount % 100 == 0)

 Console.WriteLine($"Generation {generationCount}: - Average fitness: {parentsFitness}");

for (i = 0; i < CHROMOSOMES_NUMBER; i++) {

mother = ChooseParent(chromosomes, rnd);

father = ChooseParent(chromosomes, rnd);

 childChromosomes.Add(father.CreateChild(mother));

childsFitness = childChromosomes.Average(x => x.Fitness);

if ((int)childsFitness == (int)parentsFitness)

fitnessChangeCount++; chromosomes.Clear();

chromosomes.AddRange(childChromosomes);

 childChromosomes.Clear();

fitnessSumm = chromosomes.Select(x => x.Fitness).Sum();

foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; generationCount++; } }

public static Chromosome ChooseParent(List chromosomes, Random rnd) {

double probabilitySum, parentProbability;

Chromosome parent = null;

 probabilitySum = 0.0;

parentProbability = rnd.NextDouble();

for (int j = 0; j < GENES_NUMBER; j++) {

 if (probabilitySum < parentProbability) probabilitySum += chromosomes.ElementAt(j).Probability;

else { parent = chromosomes.ElementAt(j - 1); break; } } return parent; } } }

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

turncate

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

roulette

