1 exercise — Roman Rudski

Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome — the more the better.
3. Select 2 chromosomes by roulette method

4. Create a child chromosome by a uniform-crossover.

5. Repeat from 2. to 5. 100 times and create the next generation.

6. Repeat 6. until the fitness value does not change any more.
using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using static Genetic.Constants;

namespace Genetic {

public static class Constants {

public const int CHROM= 100;

public const int GENES = 1000;

public const int GENERAT = 1000;

public const int FINTESS = 100;

public const int MUT = 10000;

public const int MUTATION = 10;

1}

namespace Genetic {

public class Chromosome : IComparable {

public List Genes { get; set; }

public double Fitness { get; set; }

public double Probability { get; set; }

//for roulette method

public int Count { get; set; }

readonly Random _rnd;

public Chromosome(Random rnd) { _rnd = rnd; Genes = new List();
for (inti=0; i< GENES_NUMBER; i++)
Genes.Add(_rnd.Next(2));

Fitness = Genes.Sum();

} public int CompareTo(Chromosome compareChromosome)
{ if (compareChromosome == null) return -1;

else return compareChromosome.Fitness.CompareTo(Fitness); }
public Chromosome CreateChild(Chromosome parent2)

{int chooseParent; Chromosome child = new Chromosome(_rnd);
child.Genes.Clear();

for(inti=0; i < GENES_NUMBER; i++)

{ chooseParent = _rnd.Next(2);

if (chooseParent == 1) child.Genes.Add(Genes.ElementAt(i));
else child.Genes.Add(parent2.Genes.ElementAt(i)); }
child.Fitness = child.Genes.Sum(); return child; } } }

using System;

using System.Collections.Generic;



using System.Ling;

using System.Text;

using System.Threading.Tasks;

using static Genetic.Constants;

namespace Genetic {

class Program { static void Main(string[] args) { List chromosomes = new List();
List childChromosomes = new List();

int generationCount = 0; // increment if fitness hasn't change

int fitnessChangeCount = 0;

double parentsFitness, childsFitness;

inti;

Random rnd = new Random(DateTime.Now.TimeOfDay.Milliseconds);

//1-st generation

for (i = 0; i < CHROMOSOMES_NUMBER; i++)

chromosomes.Add(new Chromosome(rnd));

double fitnessSumm = chromosomes.Select(x => x.Fitness).Sum();

foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; chromosomes.Sort();
//1-st generation

Console.WriteLine("Calculating...");

Chromosome mother, father;

while (generationCount != GENERATIONS_NUMBER) {

chromosomes.Sort();

parentsFitness = chromosomes.Average(x => x.Fitness);

if (generationCount % 100 == 0)

Console.WriteLine($"Generation {generationCount}: - Average fitness: {parentsFitness}");
for (i=0; i < CHROMOSOMES_NUMBER; i++) {

mother = ChooseParent(chromosomes, rnd);

father = ChooseParent(chromosomes, rnd);
childChromosomes.Add(father.CreateChild(mother));

childsFitness = childChromosomes.Average(x => x.Fitness);

if ((int)childsFitness == (int)parentsFitness)

fitnessChangeCount++; chromosomes.Clear();

chromosomes.AddRange(childChromosomes);

childChromosomes.Clear();

fitnessSumm = chromosomes.Select(x => x.Fitness).Sum();

foreach (var chr in chromosomes) chr.Probability = chr.Fitness / fitnessSumm; generationCount++; } }
public static Chromosome ChooseParent(List chromosomes, Random rnd) {

double probabilitySum, parentProbability;

Chromosome parent = null;

probabilitySum = 0.0;

parentProbability = rnd.NextDouble();

for (intj =0; j < GENES_NUMBER; j++) {

if (probabilitySum < parentProbability) probabilitySum += chromosomes.ElementAt(j).Probability;
else { parent = chromosomes.ElementAt(j - 1); break; } } return parent; } } }



1000
900
800
700
600
500
400
300
200
100

1000
900
800
700
600
500
400
300
200
100

turncate

0 200 400 600 800 1000
roulette
0 200 400 600 800 1000



