1 exercise — Andrey Cheslow

Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome — the more the better.
3. Select 2 chromosomes by roulette method

4. Create a child chromosome by a uniform-crossover.

5. Repeat from 2. to 5. 100 times and create the next generation.

6. Repeat 6. until the fitness value does not change any more.

Source Code

package siit_1;
import java.util.Random;

/**
*

* @author Andrey Cheslow

*/

public class SIIT_1 {

public static void main(String[] args) {
int generation[][]=new int[100][1000];
int next_generation[][]=new int[100][1000];
int number_of choices[] =new int [100];
Random rnd=new Random();
//make first generation
for(int i=0;i<100;i++){
for(int j=0;j<1000;j++){

generation[i][j]=(rnd.nextInt(2));

}

}
double probability[] = new double[100];

int fitness[] = new int[100];
int sum_fit=0;
while (fitness[0]<1000){
for(int i=0;i<100;i++){
fitness|i]=0;
}
for(int i=0;i<100;i++){
number_of_choicesli]=0;
}
//calculating fitness
for(int i=0;i<100;i++){
for(int j=0;j<1000;j++){
if (generation[i][j]==1) fitness[i]++;
}
}

//sort generation according to ascending

sort(fitness,generation);

sum_fit=0;

//calculating probability

for(int j=0;j<100;j++){
sum_fit+=fitness[j];

}
for(int j=0;j<100;j++){
probability[j]=(double)(fitness[j])/sum_fit;
}
System.out.printIn(fitness[0]+" "+sum_fit/100);

make_new_gen(probability,generation,next_generation,number_of choices);
for(int i=0;i<100;i++){
System.out.printin(number_of choices[i]);
}
generation=next_generation;
}
}

public static void sort(int[] fitness,int[][] generation){
int temp=0;

for(int i=0;i<99;i++){
for(int j=i+1;j<100;j++){
if (fitness[j]>fitness][i]){
temp-=fitness[i];
fitnessli]=fitness[j];
fitness[jl=temp;
int temps[]=generationli];
generation[i] = generation[j];
generation[j] = temps;
}
}
!
}
public static void make_new_gen(double[] probability,int[][] generation,int[][] next_generation, int[]
number_of choices){
Random rnd= new Random();
for(int i=0;i<100;i++){
//roulette method
double p1=(double)(rnd.nextint(100))/100;
double p2=(double)(rnd.nextint(100))/100;

int nump1=0,nump2=0;
int k=0;
while(p1>0){

if((p1-probability[k])>0){k++;p1-=probability[k];}
else {numpl=k;pl-=probability[k];}

}

k=0;

while(p2>0){

if((p2-probability[k])>0){k++;p2-=probability[k];}
else {nump2=k;p2-=probability[k];}

}

//truncate method

/¥int numpl=rnd.nextint(50);

int nump2=rnd.nextint(50);*/

number_of choices[nump1]++;

number_of choices[nump2]++;

for(int f=0;f<1000;f++){
int orrr=rnd.nextint(2);
//uniform crossover
if(orrr==0)
next_generation[i][f]=generation[nump1][f];
else next_generation[i][f]=generation[nump2][f];

m

number of
generation

First 20-th last
number of
chromosome

1 2 7 4

2 1 1 1

3 1 1 1

4 4 2 2

5 1 2 2

6 1 4 2

7 2 2 2

8 1 3 1

9 0 5 5

10 1 2 0

11 3 2 2

12 3 0 1

13 2 1 2

14 3 3 2

15 1 2 3

16 4 2 0

17 0 0 6

18 0 1 1

19 1 1 1

20 3 2 0

21 3 8 2

22 5 2 2

23 3 4 1

24 1 1 1

25 6 3 3

26 1 4 3

27 2 1 1

28 0 1 2

29 3 2 3

30 1 0 4

31 2 0 3

32 1 5 1

33 2 2 2

34 2 3 6

35

36
37
38
39
40

41

42

43

44
45

46

47

48

49

50
51

52
53
54
55
56
57
58
59
60
61

62

63
64
65
66
67

68
69
70
71

72

73
74
75
76
77
78
79
80
81

82 2 0 1
83 2 2 3
84 0 0 0
85 1 2 2
86 1 2 4
87 3 4 1
88 2 1 4
89 1 2 4
90 2 2 1
91 1 0 0
92 1 6 3
93 1 2 1
94 4 5 5
95 3 3 1
96 2 2 1
97 1 1 1
98 0 1 3
99 4 0 3
100 2 2 0

roulette-method
570
520
470
420
370
320
270

220
1 5 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

=the best fithess === average fitness

truncate-method

670

620

570

520

470

RN

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

e the best fitness === gverage fitness

