
1 exercise – Andrey Cheslow

Conditions

1. Create 100 random binary-chromosomes each with 1000 genes.
2. Fitness is the number of “1” in one chromosome – the more the better.
3. Select 2 chromosomes by roulette method
4. Create a child chromosome by a uniform-crossover.
5. Repeat from 2. to 5. 100 times and create the next generation.
6. Repeat 6. until the fitness value does not change any more.

Source Code

package siit_1;
import java.util.Random;
/**
 *
 * @author Andrey Cheslow
 */
public class SIIT_1 {
 public static void main(String[] args) {
 int generation[][]=new int[100][1000];
 int next_generation[][]=new int[100][1000];
 int number_of_choices[] =new int [100];
 Random rnd=new Random();
 //make first generation
 for(int i=0;i<100;i++){
 for(int j=0;j<1000;j++){

 generation[i][j]=(rnd.nextInt(2));
 }
 }
 double probability[] = new double[100];
 int fitness[] = new int[100];
 int sum_fit=0;
 while (fitness[0]<1000){
 for(int i=0;i<100;i++){
 fitness[i]=0;
 }
 for(int i=0;i<100;i++){
 number_of_choices[i]=0;
 }
 //calculating fitness
 for(int i=0;i<100;i++){
 for(int j=0;j<1000;j++){
 if (generation[i][j]==1) fitness[i]++;
 }
 }
 //sort generation according to ascending
 sort(fitness,generation);
 sum_fit=0;
 //calculating probability
 for(int j=0;j<100;j++){
 sum_fit+=fitness[j];

 }
 for(int j=0;j<100;j++){
 probability[j]=(double)(fitness[j])/sum_fit;
 }
 System.out.println(fitness[0]+" "+sum_fit/100);

 make_new_gen(probability,generation,next_generation,number_of_choices);
 for(int i=0;i<100;i++){
 System.out.println(number_of_choices[i]);
 }
 generation=next_generation;
 }
 }
 public static void sort(int[] fitness,int[][] generation){
 int temp=0;

 for(int i=0;i<99;i++){
 for(int j=i+1;j<100;j++){
 if (fitness[j]>fitness[i]){
 temp=fitness[i];
 fitness[i]=fitness[j];
 fitness[j]=temp;
 int temps[]=generation[i];
 generation[i] = generation[j];
 generation[j] = temps;
 }
 }
 }
 }
 public static void make_new_gen(double[] probability,int[][] generation,int[][] next_generation, int[]
number_of_choices){
 Random rnd= new Random();
 for(int i=0;i<100;i++){
 //roulette method
 double p1=(double)(rnd.nextInt(100))/100;
 double p2=(double)(rnd.nextInt(100))/100;

 int nump1=0,nump2=0;
 int k=0;
 while(p1>0){

 if((p1-probability[k])>0){k++;p1-=probability[k];}
 else {nump1=k;p1-=probability[k];}
 }
 k=0;
 while(p2>0){

 if((p2-probability[k])>0){k++;p2-=probability[k];}
 else {nump2=k;p2-=probability[k];}
 }
 //truncate method
 /*int nump1=rnd.nextInt(50);
 int nump2=rnd.nextInt(50);*/
 number_of_choices[nump1]++;

 number_of_choices[nump2]++;
 for(int f=0;f<1000;f++){
 int orrr=rnd.nextInt(2);
 //uniform crossover
 if(orrr==0)
 next_generation[i][f]=generation[nump1][f];
 else next_generation[i][f]=generation[nump2][f];
 }
 }}}

number of
generation

First 20-th last
number of

chromosome

1 2 7 4

2 1 1 1

3 1 1 1

4 4 2 2

5 1 2 2

6 1 4 2

7 2 2 2

8 1 3 1

9 0 5 5

10 1 2 0

11 3 2 2

12 3 0 1

13 2 1 2

14 3 3 2

15 1 2 3

16 4 2 0

17 0 0 6

18 0 1 1

19 1 1 1

20 3 2 0

21 3 8 2

22 5 2 2

23 3 4 1

24 1 1 1

25 6 3 3

26 1 4 3

27 2 1 1

28 0 1 2

29 3 2 3

30 1 0 4

31 2 0 3

32 1 5 1

33 2 2 2

34 2 3 6

35 3 0 2

36 1 1 2

37 2 2 3

38 2 2 1

39 3 2 0

40 2 2 1

41 1 1 0

42 2 3 0

43 0 1 2

44 4 2 4

45 1 1 0

46 4 3 1

47 4 0 0

48 3 1 0

49 5 4 1

50 3 0 4

51 2 3 3

52 1 0 3

53 2 5 4

54 1 1 4

55 3 2 1

56 1 1 3

57 0 0 2

58 3 1 0

59 0 2 1

60 3 3 2

61 1 1 1

62 4 1 6

63 0 3 3

64 3 2 1

65 3 1 1

66 6 2 1

67 2 5 1

68 1 3 4

69 3 1 4

70 1 2 0

71 1 0 2

72 4 5 1

73 3 2 2

74 0 3 2

75 1 0 1

76 0 2 1

77 4 2 2

78 3 2 2

79 1 3 2

80 3 1 5

81 1 0 4

82 2 0 1

83 2 2 3

84 0 0 0

85 1 2 2

86 1 2 4

87 3 4 1

88 2 1 4

89 1 2 4

90 2 2 1

91 1 0 0

92 1 6 3

93 1 2 1

94 4 5 5

95 3 3 1

96 2 2 1

97 1 1 1

98 0 1 3

99 4 0 3

100 2 2 0

220

270

320

370

420

470

520

570

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

roulette-method

the best fitness average fitness

470

520

570

620

670

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

truncate-method

the best fitness average fitness

