1. Create 100 random binary-chromosomes each with 1000 genes.

2. Fitness is the number of “1” in one chromosome — the more the better.
3. Select 2 chromosomes at random from the better half of the population.
4. Create a child chromosome by a uniform crossover.

5. Repeat from 2. to 4. 100 times and create the next generation.

6. Repeat 5. until the fitness value does not change any more.

7. Show the result:

(1) Desplay the best chromosome in the 1st, an intermediate & final generation.

(2) Desplay the best and average fitness vs. generation.

Truncate selection
F N v

10004~

8001

6001

4004

2004

MaxFit
AveFit

‘lFH

Roulette selection

AveFIt
4001
3004
2001
1001
X
| | 1 | | | | ™
200 400 600 500 1000 1200 1400
Selected table
First generation Middle generation Last generation
how many how many how many
Number | times is Number | times is Number | times is
selected selected selected
0 2 0 2 0 2
1 3 1 3 1 2
2 1 2 2 2 2
3 2 3 1 3 2
4 3 4 2 4 2
5 1 5 3 5 2
6 3 6 2 6 2
7 1 7 1 7 1
8 2 8 2 8 2
9 0 9 2 9 2
10 4 10 3 10 2
11 2 11 2 11 2
12 0 12 1 12 1
13 3 13 3 13 2
14 3 14 2 14 3
15 1 15 1 15 3
16 2 16 1 16 1
17 2 17 3 17 1
18 2 18 1 18 2

N = &N &N MO N 4 O N N G NN 00 O N = 0O N N N MO 4 NN N NN N N NN NN O G N0 N G 00 G N 0O N +F " N N 0 N
OO O " N 0N < N O ~N 0 OO O d N N N VW N 0 0O O N ;O S N W N 0 00 O d &N M S N W N 0 OO O «d & m
I N &N N &N NN NN N N NN N MO MmO O O O O O 6O 60606060 5 O S S S NN o n on onon N on o mn o n O OV OV
N N &N N0 M = N «+d =" N N =<4 0O N N O N I O N N N0 0N A NN NN N N A = N N . N 0O A N G 0O N A A N 0o
OO O " N 0N < N O ~N 0 OO O d N N N W N 0 00 O 4 N MO < N LW N 00 OO0 O - &N M & ;N O N 0 O O «d & m
I N &N N N NN NN NN NN NN NN MmO MmO O O 0O 6O 6O o060 9§ 9§ 9§ 9 8 89 8 <8 < nononon o onon N on on o n O 0w OV W
N N N MO N o M d N N N N N M N N N MmO N S ;n N 0O N S NN SN N N NN NN N O momm O
O O « N MO < 1N O N 0 OO O 04 &N MO <& N O N 00 OO O 4 &N N < 1NN O SN 0 OO0 O +J &N M < 1NN O N 00 OO ©O o &N Mm
I N N N N N N N NN NN NN ™M O O O O 0O O 6O o60Oo6060 F 7 g S T T T NN o n on onon onon o n o n O 0w O

- N &N N N N . 0O &N &N MO O 4 &N &N N NN N N N O N N0 A o;m G & N A S NN N NN N
S 1D W N 0 O O 4 N MO < 1N W N 0 O O 0 & M < 1NN O N 0 O O 0 o M < 1N O N 0 O
O O O W OV O NN M M MMM NMSMDNMMDMSMMNSM OO OO O K 6 O W W W 0 OO OO OO OO O O O O O O
| M N N N O N N 3 N MO O N N N N O 0 4 N N & A N N 0O AFA A n on N A N N 0 o
S 1D W N 0 O O 4 N MO < 1N W N 0 O O o &N M < 1NN O N 0 O O o o M < 1NN O N 0 O
O W OV VU OV O I~ N M~ MM MM MMM O W W W0 6 60 60 60 60 0 O O O O O O 6O O o O
N N " N NN O N N O N & O N NN " on n 1 n n O N < O N AN G n N A A N O < on -
< 1N O N 0 O O 4 N MO < 1N O N 0 O O o N M < 1N O NN 0 O O 0 NN M < 1N O N 0 O
O © O VU © O NN N M N M MM MM MM O 0 O 6 6 60 60 60 60 60 OO0 O OO0 O O oo oo o o O

Source code
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_1
{
class generation
{
List<int[]> gens;
List<int> fitness { get; }
List<float> probability { get; }
List<int> chromSelect;
public float averagefitness = of;

int rando = 0;

public generation()

{
gens = new List<int[]>();
fitness = new List<int>();
probability = new List<float>();
chromSelect = new List<int>();

for (int j = 9; j < 100; j++)
{
int[] gen = new int[1000];
gens.Add(gen);
fitness.Add(0);
probability.Add(ef);
chromSelect.Add(0);

}

public generation(List<int[]> new_gens)
{
gens = new List<int[]>();
fitness = new List<int>();
probability = new List<float>();
chromSelect = new List<int>();
gens = new_gens;
for (int j = 0©; j < 100; j++)
{
fitness.Add(9);
probability.Add(ef);
chromSelect.Add(0);

}

public void randomize()
{
Random rand = new Random();
for (int i = 0; i < 100; i++)
{
for (int j = 0; j < 1000; j++)
{

gens[i][j] = rand.Next() % 2;

}
}
public void setFitness()
{
for (int i = 0; i < 100; i++)
{
for (int j = 0; j < 1000; j++)
{
if (gens[i][j] == 1) fitness[i] += 1;
}
}
}
public void setProbability()
{
int mass = 0; ;
for (int i = ©; i < 100; i++)
{
mass += fitness[i];
}
averagefitness = mass / 100;
for (int i = ©; i < 100; i++)
{
probability[i] = (float)fitness[i] / (float)mass;
}
}
public int[] newChild()
{

Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);
rando++;

if (rando == 10000000) rando = 0;

int rand_num = rand.Next(1000000000);

float sum = of;

int[] chrom_1 = new int[1000], chrom_2 = new int[1000];

for(int i = 0; i < 100; i++)

{
sum += probability[i]* 1000000000 ;
if (rand_num <= sum)
{
chromSelect[i]++;
chrom_1 = gens[i];
break;
}
}
//chrom_1 = gens[rand_num];
sum = of;

rand_num = rand.Next(1000000000) ;

for (int i = 0; i < 100; i++)

{
sum += probability[i] * 1000000000 ;
if (rand_num <= sum)

{
chromSelect[i]++;
chrom_2 = gens[i];
break;

}

//chrom_2 = gens[rand_num];

//Random lamb = new Random(rand.Next());
int[] new_chrom = new int[1000];
for (int i = 0; i < 1000; i++)

{
if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
else new_chrom[i] = chrom_2[i];
}
return new_chrom;
}
public int bestFitness()
{
return fitness.Max();
}
public void Sort()
{
for (int i = 0; 1 < 100 - 1; i++)
{
bool swapped = false;
for (int j =0; j < 100 - i - 1; j++)
if (fitness[j] < fitness[j + 1])
int[] tmp_gen = gens[j];
gens[j] = gens[j + 1];
gens[j + 1] = tmp_gen;
int tmp_fit = fitness[j];
fitness[j] = fitness[j + 1];
fitness[j + 1] = tmp_fit;
swapped = true;
}
}
if (!swapped) break;
}
public float getAverageFit()
{
return averagefitness;
}
public void WriteTable(StreamWriter filel,StreamWriter file2)
{
for (int i = 9; 1 < 100; i++) {
filel.WriteLine(chromSelect[i].ToString());
file2.WriteLine(i.ToString());
}
filel.WriteLine();
filel.WriteLine();
}

using System;
using System.Collections.Generic;
using System.Ling;

using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_1

{
class Program
{
static void Main(string[] args)
{
StreamWriter avgFitFile = new StreamWriter("averageFit.txt");
StreamiWriter maxFitFile = new StreamWriter("maxFit.txt");
StreamWriter numGenFile = new StreamWriter("numGen.txt");
StreamiWriter tableFile = new StreamWriter("Table.txt");
StreamWriter tablenum = new StreamWriter("Num.txt");
generation old_gens = new generation();
old_gens.randomize();
old_gens.setFitness();
old_gens.setProbability();
int maxFit = 0;
int numGeneration = 0;
for (int j = ©; j < 10000; numGeneration++)
{
numGenFile.WriteLine(numGeneration.ToString());
Console.WriteLine(old_gens.bestFitness() + " " + old_gens.getAverageFit());
if (old_gens.bestFitness() == 1000) break;
List<int[]> new_tmp = new List<int[]>();
//0ld_gens.Sort();
for (int i = @; i < 100; i++)
{
new_tmp.Add(old_gens.newChild());
}
old_gens.WriteTable(tableFile,tablenum);
generation new_gens = new generation(new_tmp);
old_gens = new_gens;
old_gens.setFitness();
old_gens.setProbability();
avgFitFile.WritelLine(old_gens.getAverageFit().ToString());
maxFitFile.WritelLine(old_gens.bestFitness().ToString());
if (old_gens.bestFitness() > maxFit)
{
maxFit = old_gens.bestFitness();
j=0;
}
else j++;
}
tablenum.Close();
tableFile.Close();
numGenFile.Close();
avgFitFile.Close();
maxFitFile.Close();
}
}

