
DENIS RAMSKIY
GROUP II-11

Class of working with gene
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;

namespace GenAlg
{
 class Gen
 {
 List<int> chromosome;
 int fitness;
 int used;

 public Gen()
 {
 used = 0;
 chromosome = new List<int>();
 for (int i = 0; i < 1000; i++)
 {
 Random rnd;
 if(i%2==0)
 rnd = new Random(DateTime.Now.Millisecond+i*i*i);
 else
 rnd = new Random(DateTime.Now.Millisecond-i*i*i);
 int dice = rnd.Next(0, 2);
 chromosome.Add(dice);
 if (dice == 1)
 fitness++;
 }

 }
 public Gen(List<int> crom)
 {
 used = 0;
 this.chromosome = new List<int>();
 for (int i = 0; i < crom.Count; i++)
 {
 if (crom[i] == 1)
 this.fitness++;
 this.chromosome.Add(crom[i]);
 }
 }
 public Gen(Gen arg)
 {
 this.chromosome = new List<int>();
 for (int i = 0; i < arg.chromosome.Count; i++)
 this.chromosome.Add(arg.chromosome[i]);
 this.fitness = arg.fitness;
 this.used = arg.used;
 }

 public static Gen operator + (Gen arg_1,Gen arg_2)
 {
 for (int i = 0; i < arg_1.chromosome.Count; i++)
 arg_1.chromosome[i] = arg_2.chromosome[i];

 arg_1.fitness = arg_2.fitness;
 return arg_1;
 }

 public int get_fitness()
 {
 return fitness;
 }
 public int get_gen(int i)
 {
 return chromosome[i];
 }

 public int get_used()
 {
 return used;
 }
 public void inkr_used()
 {
 used++;
 }
 }
}

Class of working with generation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace GenAlg
{
 class Generation
 {
 List<Gen> parens_generation;
 int general_fitness;

 public Generation()
 {
 parens_generation = new List<Gen>();
 general_fitness = 0;
 for (int i = 0; i < 100; i++)
 {
 Gen temp = new Gen();
 parens_generation.Add(temp);
 general_fitness += temp.get_fitness();
 }
 sort();
 }
 public void sort()
 {
 for (int i = 0; i < parens_generation.Count; i++)
 for (int j = 0; j < parens_generation.Count - 1; j++)
 if (parens_generation[j].get_fitness() < parens_generation[j +
1].get_fitness())
 {
 Gen temp = new Gen(parens_generation[j]);
 parens_generation[j] += parens_generation[j + 1];

 parens_generation[j + 1] += temp;
 }
 }
 public Gen get_gen(int i)
 {
 return parens_generation[i];
 }
 public int get_general_fitness()
 {
 return general_fitness;
 }

 public List<Gen> get_parents_tranc()
 {
 List<Gen> parents = new List<Gen>();
 int rnd_tik = 17;
 while (parents.Count < 2)
 {
 for (int i = 0; i < 100; i++)
 {
 Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik * rnd_tik);
 if (rnd.NextDouble() < (Double)parens_generation[i].get_fitness() /
general_fitness)
 {
 parents.Add(parens_generation[i]);
 parens_generation[i].inkr_used();
 break;
 }
 rnd_tik += 7*i;
 }
 }
 return parents;
 }
 public List<Gen> get_parents_rul()
 {
 List<Gen> parents = new List<Gen>();
 int rnd_tik = 17;
 while (parents.Count < 2)
 {
 Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik * rnd_tik);
 int a=rnd.Next() % 50;
 parents.Add(parens_generation[a]);
 parens_generation[a].inkr_used();
 rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
 a = rnd.Next() % 50;
 parents.Add(parens_generation[a]);
 parens_generation[a].inkr_used();
 rnd_tik += 19;
 }
 return parents;
 }
 public Gen get_child(List<Gen> perants)
 {
 int rnd_tik = 17;
 List<int> cild = new List<int>();
 for (int i = 0; i < 1000; i++)
 {
 Random rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
 if (rnd.Next(0, 2) == 1)
 cild.Add(perants[0].get_gen(i));
 else

 cild.Add(perants[1].get_gen(i));
 rnd_tik *= i;
 }
 Gen child = new Gen(cild);
 return child;
 }
 public void new_generation()
 {
 File.WriteAllText("carent_fitness.txt", "");
 File.WriteAllText("used.txt", "");
 for (int i = 0; i < 100; i++)
 {
 File.AppendAllText("carent_fitness.txt",
this.get_gen(i).get_fitness().ToString() + "\r\n");
 File.AppendAllText("used.txt", this.get_gen(i).get_used() + "\r\n");
 }

 List<Gen> new_generation = new List<Gen>();
 int new_fitnes = 0;
 for (int i = 0; i < 100; i++)
 {
 Gen temp = new Gen(get_child(get_parents_tranc()));
 new_generation.Add(temp);
 new_fitnes += temp.get_fitness();
 }
 this.general_fitness = new_fitnes;
 parens_generation = new_generation;
 sort();
 }
 }
}

Main program class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace GenAlg
{
 class Program
 {
 static void Main(string[] args)
 {
 int tik = 0;
 Generation work = new Generation();

 File.WriteAllText("best_fitness.txt", "");
 File.WriteAllText("generation_fitness.txt", "");
 while (work.get_gen(0).get_fitness() < 800)
 {
 if (tik == 1 || tik == 20)
 write(work);
 File.AppendAllText("best_fitness.txt",
work.get_gen(0).get_fitness().ToString()+"\r\n");
 File.AppendAllText("generation_fitness.txt",
work.get_general_fitness().ToString() + "\r\n");

 Console.WriteLine(work.get_general_fitness());
 work.new_generation();
 tik++;
 }

 }

 static public void write(Generation work)
 {
 File.WriteAllText("carent_fitness.txt", "");
 File.WriteAllText("used.txt", "");
 for (int i = 0; i < 100; i++)
 {
 File.AppendAllText("carent_fitness.txt",
work.get_gen(i).get_fitness().ToString() + "\r\n");
 File.AppendAllText("used.txt", work.get_gen(i).get_used() + "\r\n");
 }
 }
 }
}

truncate-method

Graph 1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

G
e

n
e

ra
l f

it
n

e
ss

Generation

0

100

200

300

400

500

600

700

800

900

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

 f
it

n
e

ss

Generation

Ряд1

Table of generation condtion

fitness amaund of use fitness
amaund of
use fitness

amaund of
use

545 1 651 4 870 1

544 2 650 5 869 2

538 3 649 3 868 3

536 2 648 1 867 2

535 5 648 3 867 5

534 2 647 3 866 2

534 2 647 4 866 2

534 2 647 4 866 2

533 2 647 1 866 2

533 1 646 1 865 4

531 1 646 1 865 5

530 0 646 1 865 3

530 0 646 2 865 1

528 1 645 3 864 3

527 2 645 2 864 3

525 1 645 5 864 4

525 3 644 2 863 4

525 4 644 2 863 1

525 0 644 2 863 1

524 4 643 2 862 1

523 2 643 2 862 1

522 2 643 1 862 2

522 1 643 0 862 3

521 0 643 0 862 2

519 1 643 2 862 5

518 0 643 2 862 0

518 1 643 1 862 1

517 1 643 5 862 1

517 3 643 0 862 3

517 3 642 0 861 3

516 3 642 4 861 3

516 1 642 2 861 1

516 2 642 2 861 2

516 2 642 1 861 2

516 4 642 0 861 4

515 5 642 1 861 0

514 1 642 1 861 1

513 1 642 1 861 1

513 1 641 2 860 1

512 2 641 2 860 2

511 1 641 2 860 1

511 6 641 2 860 0

511 5 641 1 860 0

511 1 641 0 860 1

510 1 641 0 860 1

510 1 641 2 860 1

509 2 641 2 860 1

509 2 641 2 860 2

508 4 640 4 859 1

508 2 640 2 859 2

508 1 640 3 859 1

508 0 640 0 859 0

507 0 640 0 859 0

507 0 640 0 859 0

507 0 640 0 859 0

507 0 640 0 859 0

507 0 640 0 859 0

506 0 639 0 858 0

506 0 639 0 858 0

506 0 639 0 858 0

506 0 639 0 858 0

505 0 639 0 858 0

505 0 638 0 857 0

505 0 638 0 857 0

505 0 638 0 857 0

504 0 638 0 857 0

504 0 638 0 857 0

503 0 638 0 857 0

503 0 637 0 856 0

502 0 637 0 856 0

502 0 637 0 856 0

501 0 637 0 856 0

501 0 636 0 855 0

501 0 636 0 855 0

499 0 636 0 855 0

499 0 636 0 855 0

499 0 636 0 855 0

498 0 636 0 855 0

498 0 636 0 855 0

497 0 635 0 854 0

496 0 635 0 854 0

496 0 635 0 854 0

496 0 635 0 854 0

495 0 635 0 854 0

495 0 634 0 853 0

494 0 634 0 853 0

493 0 634 0 853 0

493 0 633 0 852 0

493 0 633 0 852 0

493 0 633 0 852 0

493 0 632 0 851 0

491 0 631 0 850 0

488 0 631 0 850 0

488 0 631 0 850 0

488 0 630 0 849 0

485 0 629 0 848 0

482 0 629 0 848 0

481 0 629 0 848 0

476 0 627 0 846 0

475 0 624 0 843 0

roulette-method

Graph 2

Table of generation condtion

0

10000

20000

30000

40000

50000

60000

70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

G
e

n
e

ra
l f

it
n

e
ss

 Generation

Ряд1

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

fi
tn

e
ss

Generation

Ряд1

fitness Propability
amaund of
use fitness Propability

amaund of
use fitness Propability

amaund of
use

545 0,01094114 7 632 0,010608 8 735 0,01139 15

544 0,01092106 6 631 0,010591 12 734 0,011374 12

543 0,01090099 3 630 0,010574 7 733 0,011359 10

543 0,01090099 5 630 0,010574 4 733 0,011359 7

542 0,01088091 5 629 0,010558 7 732 0,011343 9

542 0,01088091 4 629 0,010558 6 732 0,011343 7

540 0,01084076 5 627 0,010524 3 730 0,011312 6

540 0,01084076 5 627 0,010524 5 730 0,011312 5

539 0,01082069 5 626 0,010507 5 729 0,011297 5

537 0,01078053 4 624 0,010474 4 727 0,011266 5

536 0,01076046 5 623 0,010457 5 726 0,01125 0

535 0,01074038 4 622 0,01044 5 725 0,011235 0

530 0,01064001 2 617 0,010356 5 720 0,011157 1

529 0,01061993 2 616 0,010339 4 719 0,011142 1

529 0,01061993 2 616 0,010339 5 719 0,011142 4

529 0,01061993 2 616 0,010339 4 719 0,011142 1

527 0,01057978 0 614 0,010306 2 717 0,011111 1

527 0,01057978 2 614 0,010306 2 717 0,011111 2

527 0,01057978 2 614 0,010306 2 717 0,011111 2

526 0,0105597 1 613 0,010289 2 716 0,011095 2

526 0,0105597 2 613 0,010289 0 716 0,011095 2

525 0,01053963 2 612 0,010272 2 715 0,01108 0

525 0,01053963 2 612 0,010272 1 715 0,01108 2

525 0,01053963 1 612 0,010272 0 715 0,01108 1

525 0,01053963 1 612 0,010272 0 715 0,01108 0

523 0,01049948 1 610 0,010239 0 713 0,011049 0

523 0,01049948 1 610 0,010239 0 713 0,011049 0

522 0,0104794 1 609 0,010222 0 712 0,011033 0

521 0,01045933 1 608 0,010205 0 711 0,011018 0

521 0,01045933 1 608 0,010205 0 711 0,011018 0

521 0,01045933 1 608 0,010205 0 711 0,011018 0

521 0,01045933 0 608 0,010205 0 711 0,011018 0

520 0,01043925 0 607 0,010188 0 710 0,011002 0

520 0,01043925 1 607 0,010188 0 710 0,011002 0

520 0,01043925 2 607 0,010188 0 710 0,011002 0

520 0,01043925 1 607 0,010188 0 710 0,011002 0

520 0,01043925 0 607 0,010188 0 710 0,011002 0

519 0,01041918 0 606 0,010172 0 709 0,010987 0

519 0,01041918 0 606 0,010172 0 709 0,010987 0

519 0,01041918 0 606 0,010172 0 709 0,010987 0

519 0,01041918 0 606 0,010172 0 709 0,010987 0

519 0,01041918 0 606 0,010172 0 709 0,010987 0

518 0,0103991 0 605 0,010155 0 708 0,010971 0

518 0,0103991 0 605 0,010155 0 708 0,010971 0

518 0,0103991 0 605 0,010155 0 708 0,010971 0

518 0,0103991 0 605 0,010155 0 708 0,010971 0

517 0,01037903 1 604 0,010138 0 707 0,010956 0

516 0,01035895 1 603 0,010121 0 706 0,01094 0

515 0,01033887 1 602 0,010104 0 705 0,010925 0

515 0,01033887 1 602 0,010104 0 705 0,010925 0

514 0,0103188 0 601 0,010088 0 704 0,010909 0

514 0,0103188 0 601 0,010088 0 704 0,010909 0

514 0,0103188 0 601 0,010088 0 704 0,010909 0

513 0,01029872 0 600 0,010071 0 703 0,010894 0

513 0,01029872 0 600 0,010071 0 703 0,010894 0

513 0,01029872 0 600 0,010071 0 703 0,010894 0

513 0,01029872 0 600 0,010071 0 703 0,010894 0

513 0,01029872 0 600 0,010071 0 703 0,010894 0

512 0,01027865 0 599 0,010054 0 702 0,010878 0

512 0,01027865 0 599 0,010054 0 702 0,010878 0

512 0,01027865 0 599 0,010054 0 702 0,010878 0

511 0,01025857 0 598 0,010037 0 701 0,010863 0

511 0,01025857 0 598 0,010037 0 701 0,010863 0

510 0,0102385 1 597 0,01002 0 700 0,010847 0

510 0,0102385 0 597 0,01002 0 700 0,010847 0

510 0,0102385 1 597 0,01002 0 700 0,010847 0

510 0,0102385 1 597 0,01002 0 700 0,010847 0

509 0,01021842 1 596 0,010004 0 699 0,010832 0

509 0,01021842 1 596 0,010004 0 699 0,010832 0

509 0,01021842 1 596 0,010004 0 699 0,010832 0

508 0,01019835 1 595 0,009987 0 698 0,010816 0

508 0,01019835 0 595 0,009987 0 698 0,010816 0

508 0,01019835 0 595 0,009987 0 698 0,010816 0

507 0,01017827 0 594 0,00997 0 697 0,010801 0

507 0,01017827 0 594 0,00997 0 697 0,010801 0

506 0,01015819 0 593 0,009953 0 696 0,010785 0

506 0,01015819 0 593 0,009953 0 696 0,010785 0

505 0,01013812 0 592 0,009937 0 695 0,01077 0

505 0,01013812 0 592 0,009937 0 695 0,01077 0

505 0,01013812 0 592 0,009937 0 695 0,01077 0

504 0,01011804 0 591 0,00992 0 694 0,010754 0

504 0,01011804 0 591 0,00992 0 694 0,010754 0

503 0,01009797 0 590 0,009903 0 693 0,010739 0

503 0,01009797 0 590 0,009903 0 693 0,010739 0

502 0,01007789 0 589 0,009886 0 692 0,010723 0

502 0,01007789 0 589 0,009886 0 692 0,010723 0

502 0,01007789 0 589 0,009886 0 692 0,010723 0

501 0,01005782 0 588 0,009869 0 691 0,010708 0

500 0,01003774 0 587 0,009853 0 690 0,010692 0

500 0,01003774 0 587 0,009853 0 690 0,010692 0

498 0,00999759 0 585 0,009819 0 688 0,010661 0

498 0,00999759 0 585 0,009819 0 688 0,010661 0

498 0,00999759 0 585 0,009819 0 688 0,010661 0

495 0,00993736 0 582 0,009769 0 685 0,010615 0

495 0,00993736 0 582 0,009769 0 685 0,010615 0

494 0,00991729 0 581 0,009752 0 684 0,010599 0

494 0,00991729 0 581 0,009752 0 684 0,010599 0

489 0,00981691 0 576 0,009668 0 679 0,010522 0

489 0,00981691 0 576 0,009668 0 679 0,010522 0

488 0,00979684 0 575 0,009651 0 678 0,010506 0

