
1 exercise
ALEXANDR MATVEYCHUK II-11

Conditions:
1. Create 100 random binary-chromosomes each with 1000
genes.
2. Fitness is the number of “1” in one chromosome – the more
the better.
3. Select 2 chromosomes by roulette method
4. Create a child chromosome by a uniform-crossover.
5. Repeat from 2. to 5. 100 times and create the next
generation.
6. Repeat 6. until the fitness value does not change any more.

Source Code(python):
import random
def get_fitness(chromosome):
 return chromosome.count(1)
def roulette_select(fs):
 p = random.uniform(0, sum(fs))
 fs.reverse()
 for i, f in enumerate(fs):
 if p <= 0:
 break
 p -= f
 return i
def uniform_crossover(parents):
 child = []
 for x in range(1000):
 point = random.randint(0, 1)
 if point:
 child.append(parents[0][x])
 else:
 child.append(parents[1][x])
 # print(child)
 return child
def main():
 chromosomes = [[random.randint(0, 1) for _ in range(1000)] for _ in
range(100)]
 chromosomes.sort(key=get_fitness, reverse=False)
 #fitness = [get_fitness(chromosome) for chromosome in chromosomes]
 new_chromosomes = []
 better_fitness = 0
 avg_fitness =0
 population = 0
 hits = [0]*100
 file = open('hits.txt', 'w')
 file1 = open('fitness.txt', 'w')
 file2 = open('2', 'w')
 file3 = open('3', 'w')
 while better_fitness < 1000 and population < 500:
 fitness = [get_fitness(chromosome) for chromosome in chromosomes]
 for _ in range(100):
 mom_index = roulette_select(fitness)
 pope_index = roulette_select(fitness)
 #mom_index = random.randint(0, 49)

 #pope_index = random.randint(0, 49)
 hits[mom_index]+=1
 hits[pope_index]+=1
 parents = [chromosomes[mom_index], chromosomes[pope_index]]
 new_chromosomes.append(uniform_crossover(parents))
 new_chromosomes.sort(key=get_fitness, reverse=False)
 better_fitness = get_fitness(new_chromosomes[99])
 avg_fitness = sum(fitness)/len(fitness)
 population += 1
 if population == 1 or population ==250 or population ==500:
 for hit in hits:
 file.write(str(hit) + "\n")
 file.write("__________________________\n")
 for fit in fitness:
 file1.write(str(fit)+"\n")
 file1.write("__________________________\n")
 chromosomes = new_chromosomes
 new_chromosomes=[]
 #print(len(fitness), len(chromosomes))
 hits = [0] * 100
 file2.writelines(str(better_fitness)+'\n')
 file3.writelines(str(avg_fitness)+'\n')
 print(population, '|', better_fitness, '|', avg_fitness)
 file.close()
 file1.close()
 file2.close()
 file3.close()
main()

Graph:

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

truncate method

POPULATION

A
V

E
R

A
G

E
 F

IT
N

E
S

S

TABLE:

0 100 200 300 400 500 600
480

500

520

540

560

580

600

620

640
ROULETTE METHOD

POPULATION

A
V

E
R

A
G

E
 F

IT
N

E
S

S

Truncate method

Chrom.

First population Middle population Last population
fitness hits fitness hits fitness hits

1 538 4 858 7 921 3
2 534 3 855 4 921 5
3 530 2 854 4 921 6
4 529 5 854 0 921 2
5 528 2 853 4 921 2
6 527 7 852 1 921 5
7 525 5 852 4 921 3
8 523 3 852 5 921 5
9 522 7 852 2 921 3
10 521 3 850 4 921 4
11 519 7 850 6 921 5
12 519 6 850 3 921 5
13 519 1 850 8 921 4
14 519 5 849 5 921 4
15 518 5 849 4 921 4
16 518 8 849 1 921 4
17 517 2 848 3 921 3
18 517 5 848 3 921 4
19 516 5 848 3 921 2
20 515 0 847 7 921 3
21 513 4 847 4 921 6
22 512 5 847 3 921 1
23 512 5 847 3 921 5
24 512 1 846 5 921 4
25 510 5 846 6 921 2
26 510 4 846 3 921 1
27 509 3 846 4 921 4
28 508 0 846 4 921 6
29 508 6 846 6 921 3
30 507 3 846 5 921 5
31 506 5 846 1 921 4
32 506 5 845 5 921 2
33 506 6 845 4 921 4
34 506 5 845 3 921 5
35 505 2 845 4 921 1
36 505 2 845 4 921 8
37 504 5 844 2 921 1
38 504 5 844 5 921 5
39 504 2 844 6 921 9
40 504 3 844 4 921 7
41 504 4 844 5 921 4
42 503 3 844 3 921 4
43 503 3 844 2 921 3
44 503 3 844 4 921 3
45 502 5 844 3 921 3
46 502 4 844 3 921 3
47 502 2 843 3 921 4
48 501 4 843 4 921 4
49 501 6 842 8 921 7
50 501 5 842 6 921 6

51 501 0 842 0 921 0
52 500 0 841 0 921 0
53 500 0 841 0 921 0
54 500 0 841 0 921 0
55 500 0 841 0 921 0
56 500 0 841 0 921 0
57 500 0 841 0 921 0
58 500 0 841 0 921 0
59 500 0 841 0 921 0
60 500 0 841 0 921 0
61 499 0 840 0 921 0
62 499 0 840 0 921 0
63 499 0 840 0 921 0
64 499 0 839 0 921 0
65 499 0 839 0 921 0
66 498 0 839 0 921 0
67 498 0 839 0 921 0
68 498 0 839 0 921 0
69 496 0 839 0 921 0
70 496 0 838 0 921 0
71 496 0 838 0 921 0
72 495 0 838 0 921 0
73 494 0 838 0 921 0
74 494 0 838 0 921 0
75 494 0 838 0 921 0
76 493 0 838 0 921 0
77 493 0 838 0 921 0
78 491 0 838 0 921 0
79 490 0 837 0 921 0
80 488 0 837 0 921 0
81 487 0 837 0 921 0
82 486 0 836 0 921 0
83 486 0 836 0 921 0
84 485 0 836 0 921 0
85 485 0 836 0 921 0
86 483 0 836 0 921 0
87 482 0 835 0 921 0
88 482 0 835 0 921 0
89 481 0 835 0 921 0
90 479 0 835 0 921 0
91 478 0 834 0 921 0
92 476 0 834 0 921 0
93 476 0 834 0 921 0
94 475 0 833 0 921 0
95 475 0 833 0 921 0
96 473 0 833 0 921 0
97 471 0 832 0 921 0
98 470 0 832 0 921 0
99 468 0 831 0 921 0
100 468 0 826 0 921 0

Roulette method

Chrom.

First population Middle population Last pop.
fitness hits fitness hits fitness hits

1 461 0 588 0 619 0
2 466 2 588 1 619 2
3 469 2 589 3 619 0
4 470 2 590 3 619 3
5 474 2 590 2 619 6
6 480 0 590 1 619 1
7 480 6 590 3 619 1
8 481 1 590 1 619 2
9 484 2 592 6 619 1
10 485 2 592 7 619 2
11 485 2 592 2 619 1
12 486 3 592 7 619 3
13 486 3 592 3 619 4
14 486 3 592 1 619 4
15 487 2 593 1 619 0
16 488 2 593 0 619 3
17 488 2 593 1 619 1
18 488 4 594 5 619 1
19 489 3 594 1 619 2
20 489 1 594 4 619 2
21 490 2 594 3 619 1
22 490 4 594 3 619 2
23 490 0 594 3 619 4
24 490 0 595 7 619 0
25 490 1 595 3 619 2
26 490 3 595 3 619 0
27 491 6 595 0 619 4
28 491 1 595 6 619 1
29 491 2 595 2 619 1
30 492 3 595 1 619 2
31 492 2 595 1 619 3
32 493 1 596 0 619 0
33 493 2 596 5 619 5
34 493 0 596 3 619 4
35 493 2 596 3 619 2
36 494 2 596 3 619 1
37 494 3 596 2 619 4
38 495 2 596 0 619 1
39 496 1 596 3 619 0
40 496 2 596 2 619 4
41 496 1 597 2 619 2
42 497 0 597 3 619 0
43 497 2 597 2 619 1
44 497 2 597 2 619 2
45 497 0 597 2 619 4
46 497 3 597 2 619 2
47 498 1 597 0 619 1
48 498 1 597 0 619 4
49 498 3 597 0 619 3
50 499 3 597 2 619 2

51 500 1 597 2 619 1
52 500 2 597 1 619 3
53 501 1 597 2 619 2
54 501 4 597 3 619 1
55 502 2 597 2 619 2
56 502 2 598 3 619 1
57 502 1 598 2 619 1
58 502 0 598 0 619 1
59 503 1 598 1 619 2
60 504 1 598 1 619 6
61 504 0 598 0 619 3
62 505 3 598 0 619 3
63 506 1 598 0 619 1
64 506 1 598 2 619 2
65 507 2 598 3 619 1
66 507 0 598 1 619 3
67 507 1 598 1 619 2
68 507 4 598 4 619 3
69 508 2 598 1 619 1
70 509 4 598 2 619 3
71 509 0 598 0 619 0
72 509 5 599 2 619 2
73 510 0 599 0 619 1
74 510 2 599 4 619 2
75 510 3 599 2 619 2
76 510 3 599 0 619 3
77 510 1 599 1 619 3
78 511 4 599 1 619 1
79 511 3 600 1 619 0
80 511 2 600 6 619 1
81 511 1 600 1 619 2
82 511 2 600 2 619 1
83 512 3 600 2 619 3
84 512 4 600 3 619 3
85 513 4 600 1 619 1
86 513 0 600 0 619 3
87 514 3 601 1 619 3
88 514 2 601 1 619 3
89 514 3 601 1 619 2
90 515 0 601 2 619 4
91 517 2 601 1 619 0
92 519 1 601 1 619 1
93 520 0 602 0 619 4
94 520 1 602 1 619 2
95 526 4 602 1 619 2
96 527 6 602 5 619 4
97 528 3 602 1 619 1
98 532 1 603 2 619 0
99 534 2 603 1 619 2
100 553 3 604 5 619 1

