
One point crossover with roulette selection

Uniform crossover with roulette selection

Source code:

generations.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_1
{
 class generation
 {
 List<int[]> gens;
 List<int> fitness { get; }
 List<float> probability { get; }
 List<int> chromSelect;
 public float averagefitness = 0f;

 int rando = 0;

 public generation()
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();

 for (int j = 0; j < 100; j++)
 {
 int[] gen = new int[1000];
 gens.Add(gen);
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public generation(List<int[]> new_gens)
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();
 gens = new_gens;
 for (int j = 0; j < 100; j++)
 {
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public void randomize()
 {
 Random rand = new Random();
 for (int i = 0; i < 100; i++)
 {
 for (int j = 0; j < 1000; j++)
 {

 gens[i][j] = rand.Next() % 2;
 }
 }
 }
 public void setFitness()
 {
 for (int i = 0; i < 100; i++)
 {
 for (int j = 0; j < 1000; j++)
 {
 if (gens[i][j] == 1) fitness[i] += 1;
 }
 }
 }
 public void setProbability()
 {
 int mass = 0; ;
 for (int i = 0; i < 100; i++)
 {
 mass += fitness[i];
 }
 averagefitness = mass / 100;
 for (int i = 0; i < 100; i++)
 {
 probability[i] = (float)fitness[i] / (float)mass;
 }
 }
 public int[] newChild()
 {

 Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);
 rando++;
 if (rando == 10000000) rando = 0;
 int rand_num = rand.Next(1000000000);
 float sum = 0f;
 int[] chrom_1 = new int[1000], chrom_2 = new int[1000];

 for(int i = 0; i < 100; i++)
 {
 sum += probability[i]* 1000000000;
 if (rand_num <= sum)
 {
 chromSelect[i]++;
 chrom_1 = gens[i];
 break;
 }

 }
 //chrom_1 = gens[rand_num];
 sum = 0f;
 rand_num = rand.Next(1000000000);
 for (int i = 0; i < 100; i++)

 {
 sum += probability[i] * 1000000000;
 if (rand_num <= sum)
 {
 chromSelect[i]++;
 chrom_2 = gens[i];
 break;
 }
 }
 //chrom_2 = gens[rand_num];

 int[] new_chrom = new int[1000];

 //unified crossover
 //for (int i = 0; i < 1000; i++)
 //{
 // if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
 // else new_chrom[i] = chrom_2[i];
 //}

 //one point crossover
 int point = rand.Next() % 1000;
 for(int i = 0; i < 1000; i++)
 {
 if (i < point) new_chrom[i] = chrom_1[i];
 else new_chrom[i] = chrom_2[i];
 }

 return new_chrom;
 }
 public int bestFitness()
 {
 return fitness.Max();
 }

 public void Sort()
 {
 for (int i = 0; i < 100 - 1; i++)
 {
 bool swapped = false;
 for (int j = 0; j < 100 - i - 1; j++)
 {
 if (fitness[j] < fitness[j + 1])
 {
 int[] tmp_gen = gens[j];
 gens[j] = gens[j + 1];
 gens[j + 1] = tmp_gen;

 int tmp_fit = fitness[j];
 fitness[j] = fitness[j + 1];

 fitness[j + 1] = tmp_fit;
 swapped = true;
 }

 }
 if (!swapped) break;
 }
 }
 public float getAverageFit()
 {
 return averagefitness;
 }
 public void WriteTable(StreamWriter file1,StreamWriter file2)
 {
 for (int i = 0; i < 100; i++) {
 file1.WriteLine(chromSelect[i].ToString());
 file2.WriteLine(i.ToString());
 }
 file1.WriteLine();
 file1.WriteLine();
 }
 }
}

Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_1
{
 class Program
 {
 static void Main(string[] args)
 {
 StreamWriter avgFitFile = new StreamWriter("averageFit.txt");
 StreamWriter maxFitFile = new StreamWriter("maxFit.txt");
 StreamWriter numGenFile = new StreamWriter("numGen.txt");
 StreamWriter tableFile = new StreamWriter("Table.txt");
 StreamWriter tablenum = new StreamWriter("Num.txt");
 generation old_gens = new generation();
 old_gens.randomize();
 old_gens.setFitness();
 old_gens.setProbability();
 int maxFit = 0;
 int numGeneration = 0;
 for (int j = 0; j < 1000; numGeneration++)

 {
 numGenFile.WriteLine(numGeneration.ToString());
 Console.WriteLine(old_gens.bestFitness() + " " + old_gens.getAverageFit());
 if (old_gens.bestFitness() == 1000) break;
 List<int[]> new_tmp = new List<int[]>();
 //old_gens.Sort();
 for (int i = 0; i < 100; i++)
 {
 new_tmp.Add(old_gens.newChild());
 }
 old_gens.WriteTable(tableFile,tablenum);
 generation new_gens = new generation(new_tmp);
 old_gens = new_gens;
 old_gens.setFitness();
 old_gens.setProbability();
 avgFitFile.WriteLine(old_gens.getAverageFit().ToString());
 maxFitFile.WriteLine(old_gens.bestFitness().ToString());
 if (old_gens.bestFitness() > maxFit)
 {
 maxFit = old_gens.bestFitness();
 j = 0;
 }
 else j++;

 }
 tablenum.Close();
 tableFile.Close();
 numGenFile.Close();
 avgFitFile.Close();
 maxFitFile.Close();
 }
 }
}

