1 exercise

Andrey Cheslow
package siit_1;
import java.util.Random;

/**
*

* @author Andrey
*/
public class SIIT_1 {
public static void main(String[] args) {
int generation[][]=new int[100][1000];
int next_generation[][]=new int[100][1000];
int number_of_choices[] =new int [100];
Random rnd=new Random();
//make first generation
for(int i=0;i<100;i++){
for(int j=0;j<1000;j++){
generation[i][j]=(rnd.nextInt(2));
3
double probability[] = new double[100];
int fitness[] = new int[100];
int sum_fit=0;
while (fitness[0]<1000){
for(int i=0;i<100;i++){
fitnessli]=0;
}
for(int i=0;i<100;i++){
number_of choices[i]=0;
}
//calculating fitness
for(int i=0;i<100;i++){
for(int j=0;j<1000;j++){
if (generation[i][j]==1) fitness][i]++;
)
sum_fit=0;
for(int j=0;j<100;j++){
sum_fit+=fitness[j];
}
//sort generation according to ascending
sort(fitness,generation);
//calculating probability
for(int j=0;j<100;j++){
probability[j]=(double)(fitness[j])/sum_fit;
}
System.out.printin(fitness[0]+" "+sum_fit/100);
make_new_gen(probability,generation,next_generation,number_of_choices);
/*for(int i=0;i<100;i++){
System.out.printin(number_of choices[i]);

Y/

generation=next_generation;

}
}

public static void sort(int[] fitness,int[][] generation){
for(int i=0;i<99;i++){
for(int j=i+1;j<100;j++){
if (fitness[j]>fitness[i]){
int temp=fitnessli];
fitness[i]=fitness|j];
fitness[j]=temp;
int temps[]=generation[i];
generation[i] = generation[j];
generation[j] = temps;
}
}
}
}

public static void make_new_gen(double[] probability,int[][] generation,int[][]
next_generation, int[] number_of_choices){
Random rnd= new Random();
for(int i=0;i<100;i++){
/*double p1=(double)(rnd.nextint(100))/100;
double p2=(double)(rnd.nextInt(100))/100;
int nump1=0,nump2=0;
int k=0;
while(p1>0){
if((p1-probability[k])>0){k++;p1-=probability[k];}
else {numpl=k;p1-=probability[k];}
}
k=0;
while(p2>0){
if((p2-probability[k])>0){k++;p2-=probability[k];}
else {nump2=k;p2-=probability[k];}
¥/
//truncate method
int numpl1=rnd.nextint(50);
int nump2=rnd.nextint(50);
//number_of choices[nump1]++;
//number_of_choices[nump2]++;
int orrr=rnd.nextInt(1000);
for(int f=0;f<1000;f++){
//uniform crossover
if(orrr>f)
next_generationli][f]=generation[nump1][f];
else next_generation[i][f]=generation[nump?2][f];
}
}
1

Graph:

Roulette selection and uniform crossover.
X-generation

y-fitness(blue— the best, red— average)
ool

ol
ol
o}

7004

6301

6001

330y

— 5:0 IE:»D I%D ZE:»D 2%0 SE:»D 3%0
Roulette selection and one-point crossover.
X-generation

y-fitness (blue— the best, red— average)

.

r
10001 3

8501

5001

8301

800

750+

00

6301

600

330

,
430

I
T
300

!
3
330

600

I
T
630

v

,
100

,
430

I
T
300

I
T
330

,
500

I
T
630

+H

