
1 exercise
Andrey Cheslow
package siit_1;
import java.util.Random;
/**
 *
 * @author Andrey
 */
public class SIIT_1 {
 public static void main(String[] args) {
 int generation[][]=new int[100][1000];
 int next_generation[][]=new int[100][1000];
 int number_of_choices[] =new int [100];
 Random rnd=new Random();
 //make first generation
 for(int i=0;i<100;i++){
 for(int j=0;j<1000;j++){
 generation[i][j]=(rnd.nextInt(2));
 }}
 double probability[] = new double[100];
 int fitness[] = new int[100];
 int sum_fit=0;
 while (fitness[0]<1000){
 for(int i=0;i<100;i++){
 fitness[i]=0;
 }
 for(int i=0;i<100;i++){
 number_of_choices[i]=0;
 }
 //calculating fitness
 for(int i=0;i<100;i++){
 for(int j=0;j<1000;j++){
 if (generation[i][j]==1) fitness[i]++;
 } }
 sum_fit=0;
 for(int j=0;j<100;j++){
 sum_fit+=fitness[j];
 }
 //sort generation according to ascending
 sort(fitness,generation);
 //calculating probability
 for(int j=0;j<100;j++){
 probability[j]=(double)(fitness[j])/sum_fit;
 }
 System.out.println(fitness[0]+" "+sum_fit/100);
 make_new_gen(probability,generation,next_generation,number_of_choices);
 /*for(int i=0;i<100;i++){
 System.out.println(number_of_choices[i]);
 }*/

 generation=next_generation;
 }
 }
 public static void sort(int[] fitness,int[][] generation){
 for(int i=0;i<99;i++){
 for(int j=i+1;j<100;j++){
 if (fitness[j]>fitness[i]){
 int temp=fitness[i];
 fitness[i]=fitness[j];
 fitness[j]=temp;
 int temps[]=generation[i];
 generation[i] = generation[j];
 generation[j] = temps;
 }
 }
 }
 }
 public static void make_new_gen(double[] probability,int[][] generation,int[][]
next_generation, int[] number_of_choices){
 Random rnd= new Random();
 for(int i=0;i<100;i++){
 /*double p1=(double)(rnd.nextInt(100))/100;
 double p2=(double)(rnd.nextInt(100))/100;
 int nump1=0,nump2=0;
 int k=0;
 while(p1>0){
 if((p1-probability[k])>0){k++;p1-=probability[k];}
 else {nump1=k;p1-=probability[k];}
 }
 k=0;
 while(p2>0){
 if((p2-probability[k])>0){k++;p2-=probability[k];}
 else {nump2=k;p2-=probability[k];}
 }*/
 //truncate method
 int nump1=rnd.nextInt(50);
 int nump2=rnd.nextInt(50);
 //number_of_choices[nump1]++;
 //number_of_choices[nump2]++;
 int orrr=rnd.nextInt(1000);
 for(int f=0;f<1000;f++){
 //uniform crossover
 if(orrr>f)
 next_generation[i][f]=generation[nump1][f];
 else next_generation[i][f]=generation[nump2][f];
 }
 }
 }}

Graph:
Roulette selection and uniform crossover.
x-generation
y-fitness(blue— the best, red— average)

Roulette selection and one-point crossover.
x-generation
y-fitness (blue— the best, red— average)

