
DENIS RAMSKIY
GROUP II-11

the changed class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;
using System.Threading;

namespace GenAlg
{
 class Generation
 {
 List<Gen> parens_generation;
 int general_fitness;

 public Generation()
 {
 parens_generation = new List<Gen>();
 general_fitness = 0;
 for (int i = 0; i < 100; i++)
 {
 Gen temp = new Gen();
 parens_generation.Add(temp);
 general_fitness += temp.get_fitness();
 }
 sort();
 }
 public void sort()
 {
 for (int i = 0; i < parens_generation.Count; i++)
 for (int j = 0; j < parens_generation.Count - 1; j++)
 if (parens_generation[j].get_fitness() < parens_generation[j +
1].get_fitness())
 {
 Gen temp = new Gen(parens_generation[j]);
 parens_generation[j] += parens_generation[j + 1];
 parens_generation[j + 1] += temp;
 }
 }
 public Gen get_gen(int i)
 {
 return parens_generation[i];
 }
 public int get_general_fitness()
 {
 return general_fitness;
 }

 public List<Gen> get_parents_tranc()
 {
 List<Gen> parents = new List<Gen>();
 int rnd_tik = 17;
 while (parents.Count < 2)
 {
 for (int i = 0; i < 100; i++)
 {
 Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik *
rnd_tik);

 if (rnd.NextDouble() < (Double)parens_generation[i].get_fitness() /
general_fitness)
 {
 parents.Add(parens_generation[i]);
 parens_generation[i].inkr_used();
 break;
 }
 rnd_tik += 7*i;
 }
 }
 return parents;
 }
 public List<Gen> get_parents_rul()
 {
 List<Gen> parents = new List<Gen>();
 int rnd_tik = 17;
 while (parents.Count < 2)
 {
 Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik * rnd_tik);
 int a=rnd.Next() % 50;
 parents.Add(parens_generation[a]);
 parens_generation[a].inkr_used();
 rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
 a = rnd.Next() % 50;
 parents.Add(parens_generation[a]);
 parens_generation[a].inkr_used();
 rnd_tik += 19;
 }
 return parents;
 }
 public Gen get_child(List<Gen> perants)
 {
 int rnd_tik = 17;
 List<int> cild = new List<int>();
 for (int i = 0; i < 1000; i++)
 {
 Random rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
 if (rnd.Next(0, 2) == 1)
 cild.Add(perants[0].get_gen(i));
 else
 cild.Add(perants[1].get_gen(i));
 rnd_tik *= i;
 }
 Gen child = new Gen(cild);
 return child;
 }
 public Gen get_child(List<Gen> perants,int k)
 {
 Random rnd = new Random(DateTime.Now.Millisecond+(k*k*k*k)-k);
 List<int> cild = new List<int>();
 int edge = rnd.Next(0, 1000);
 for (int i = 0; i < 1000; i++)
 {
 if (i <= edge)
 cild.Add(perants[0].get_gen(i));
 else
 cild.Add(perants[1].get_gen(i));
 }
 Gen child = new Gen(cild);
 return child;
 }
 public void new_generation()
 {
 List<Gen> new_generation = new List<Gen>();
 int new_fitnes = 0;

 for (int i = 0; i < 100; i++)
 {
 Gen temp = new Gen(get_child(get_parents_rul()));
 new_generation.Add(temp);
 new_fitnes += temp.get_fitness();
 }
 this.general_fitness = new_fitnes;
 parens_generation = new_generation;
 sort();
 }
 }
}

uniform crossover for roulette selection method

table of values from the graph

Max fitness Average fitness General fitness

535 502,50 50250

553 513,04 51304

560 536,83 53683

571 541,52 54152

571 546,85 54685

580 553,96 55396

590 565,61 56561

603 574,63 57463

610 584,00 58400

612 593,09 59309

624 602,72 60272

626 609,21 60921

634 616,81 61681

643 625,76 62576

0

100

200

300

400

500

600

700

800

900

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

Fi
tn

e
ss

Generation

Max fitness

Average fitness

651 633,31 63331

657 641,43 64143

667 646,02 64602

667 653,79 65379

677 661,38 66138

685 669,08 66908

697 675,81 67581

696 681,69 68169

705 689,29 68929

705 694,30 69430

712 698,61 69861

720 706,59 70659

721 710,49 71049

729 717,86 71786

736 722,32 72232

741 727,31 72731

745 734,30 73430

748 738,65 73865

753 745,45 74545

758 750,82 75082

758 753,41 75341

765 758,19 75819

771 762,45 76245

770 765,40 76540

776 770,58 77058

782 775,27 77527

780 775,84 77584

784 779,71 77971

783 780,42 78042

785 781,82 78182

787 783,81 78381

789 785,58 78558

790 787,60 78760

792 789,29 78929

794 790,84 79084

795 792,35 79235

797 793,41 79341

797 795,04 79504

800 796,60 79660

801 797,79 79779

803 799,71 79971

803 801,44 80144

805 802,76 80276

806 804,17 80417

808 805,59 80559

808 806,73 80673

809 808,00 80800

811 809,38 80938

812 810,72 81072

813 811,81 81181

814 812,77 81277

816 813,92 81392

816 815,18 81518

817 816,09 81609

818 817,04 81704

820 818,18 81818

820 819,35 81935

821 820,10 82010

822 820,91 82091

823 821,71 82171

824 822,58 82258

824 823,49 82349

825 824,57 82457

826 825,85 82585

827 826,61 82661

827 827,38 82738

1-point crossover for roulette selection method

table of values from the graph

Max fitness Average fitness General fitness

532 499,87 49987

546 505,79 50579

538 515,14 51514

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Fi
tn

e
ss

Generation

Max fitness

Average fitness

554 525,27 52527

557 533,36 53336

568 542,76 54276

577 552,91 55291

588 560,41 56041

593 567,41 56741

594 575,23 57523

603 581,97 58197

604 587,73 58773

610 593,41 59341

616 599,43 59943

622 604,60 60460

625 610,36 61036

634 613,86 61386

633 620,15 62015

639 624,52 62452

644 629,26 62926

654 633,78 63378

651 637,70 63770

656 641,37 64137

655 645,04 64504

662 649,36 64936

665 652,91 65291

666 655,94 65594

670 659,60 65960

675 662,72 66272

679 666,18 66618

679 669,55 66955

681 672,14 67214

682 675,17 67517

685 678,17 67817

684 679,76 67976

688 681,78 68178

691 683,73 68373

690 685,44 68544

692 687,21 68721

695 688,63 68863

694 689,92 68992

695 691,20 69120

695 692,57 69257

697 693,85 69385

698 694,96 69496

