DENIS RAMSKIY
GROUP II-11

the

using
using
using
using
using
using
using

changed class

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;
System.IO;
System.Threading;

namespace GenAlg

{

class Generation

{

List<Gen> parens_generation;
int general_fitness;

public Generation()

{
parens_generation = new List<Gen>();
general _fitness = 0;
for (int i = 0; i < 100; i++)

{
Gen temp = new Gen();
parens_generation.Add(temp);
general_fitness += temp.get_fitness();

}

sort();

public void sort()
{
for (int i = @; i < parens_generation.Count; i++)
for (int j = @; j < parens_generation.Count - 1; j++)
if (parens_generation[j].get_fitness() < parens_generation[j +

1].get_fitness())

{
Gen temp = new Gen(parens_generation[j]);
parens_generation[j] += parens_generation[j + 1];
parens_generation[j + 1] += temp;
}
}
public Gen get_gen(int i)
{
return parens_generation[i];
}
public int get_general_fitness()
{
return general_fitness;
}

public List<Gen> get_parents_tranc()
{
List<Gen> parents = new List<Gen>();
int rnd_tik = 17;
while (parents.Count < 2)
{
for (int i = 0; i < 100; i++)

{

Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik *

rnd_tik);



if (rnd.NextDouble() < (Double)parens_generation[i].get_fitness() /
general_fitness)

{
parents.Add(parens_generation[i]);
parens_generation[i].inkr_used();
break;

}

rnd_tik += 7*i;

}
}
return parents;
}
public List<Gen> get_parents_rul()
{
List<Gen> parents = new List<Gen>();
int rnd_tik = 17;
while (parents.Count < 2)
{
Random rnd = new Random(DateTime.Now.Millisecond + rnd_tik * rnd_tik);
int a=rnd.Next() % 50;
parents.Add(parens_generation[a]);
parens_generation[a].inkr_used();
rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
a = rnd.Next() % 50;
parents.Add(parens_generation[a]);
parens_generation[a].inkr_used();
rnd_tik += 19;
}
return parents;
}
public Gen get_child(List<Gen> perants)
{
int rnd_tik = 17;
List<int> cild = new List<int>();
for (int i = 0; i < 1000; i++)
{
Random rnd = new Random(DateTime.Now.Millisecond - rnd_tik * rnd_tik);
if (rnd.Next(@, 2) == 1)
cild.Add(perants[0].get_gen(i));
else
cild.Add(perants[1].get_gen(i));
rnd_tik *= i;
}
Gen child = new Gen(cild);
return child;
}
public Gen get_child(List<Gen> perants,int k)
{
Random rnd = new Random(DateTime.Now.Millisecond+(k*k*k*k)-k);
List<int> cild = new List<int>();
int edge = rnd.Next(0, 1000);
for (int i = 0; i < 1000; i++)
{
if (i <= edge )
cild.Add(perants[0].get_gen(i));
else

cild.Add(perants[1].get_gen(i));

}
Gen child = new Gen(cild);
return child;

}

public void new_generation()

{

List<Gen> new_generation = new List<Gen>();
int new_fitnes = 0;



}
}

for (int i = 0; i < 100; i++)

{
Gen temp = new Gen(get_child(get_parents_rul()));
new_generation.Add(temp);
new_fitnes += temp.get_fitness();

}

this.general_fitness = new_fitnes;
parens_generation = new_generation;
sort();

uniform crossover for roulette selection method

900
800
700
600 /
@ 500
Q
£
i 400
300
—— Max fitness
200
Average fitness
100
0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrorroTil
T N O M O ON N 0 dA < N O MO OO N N 0 d < N O MmO O
I - H " NN NN T NN N OO O NN NN
Generation
table of values from the graph
Max fitness Average fitness General fitness
535 502,50 50250
553 513,04 51304
560 536,83 53683
571 541,52 54152
571 546,85 54685
580 553,96 55396
590 565,61 56561
603 574,63 57463
610 584,00 58400
612 593,09 59309
624 602,72 60272
626 609,21 60921
634 616,81 61681
643 625,76 62576




651 633,31 63331
657 641,43 64143
667 646,02 64602
667 653,79 65379
677 661,38 66138
685 669,08 66908
697 675,81 67581
696 681,69 68169
705 689,29 68929
705 694,30 69430
712 698,61 69861
720 706,59 70659
721 710,49 71049
729 717,86 71786
736 722,32 72232
741 727,31 72731
745 734,30 73430
748 738,65 73865
753 745,45 74545
758 750,82 75082
758 753,41 75341
765 758,19 75819
771 762,45 76245
770 765,40 76540
776 770,58 77058
782 775,27 77527
780 775,84 77584
784 779,71 77971
783 780,42 78042
785 781,82 78182
787 783,81 78381
789 785,58 78558
790 787,60 78760
792 789,29 78929
794 790,84 79084
795 792,35 79235
797 793,41 79341
797 795,04 79504
800 796,60 79660
801 797,79 79779
803 799,71 79971
803 801,44 80144
805 802,76 80276
806 804,17 80417
808 805,59 80559
808 806,73 80673
809 808,00 80800




811 809,38 80938

812 810,72 81072

813 811,81 81181

814 812,77 81277

816 813,92 81392

816 815,18 81518

817 816,09 81609

818 817,04 81704

820 818,18 81818

820 819,35 81935

821 820,10 82010

822 820,91 82091

823 821,71 82171

824 822,58 82258

824 823,49 82349

825 824,57 82457

826 825,85 82585

827 826,61 82661

827 827,38 82738

1-point crossover for roulette selection method

800
700
600
500
g 400
300
200

—— Max fitness
100

Average fitness
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Generation
table of values from the graph
Max fitness Average fitness General fithess

532 499,87 49987

546 505,79 50579

538 515,14 51514




554 525,27 52527
557 533,36 53336
568 542,76 54276
577 552,91 55291
588 560,41 56041
593 567,41 56741
594 575,23 57523
603 581,97 58197
604 587,73 58773
610 593,41 59341
616 599,43 59943
622 604,60 60460
625 610,36 61036
634 613,86 61386
633 620,15 62015
639 624,52 62452
644 629,26 62926
654 633,78 63378
651 637,70 63770
656 641,37 64137
655 645,04 64504
662 649,36 64936
665 652,91 65291
666 655,94 65594
670 659,60 65960
675 662,72 66272
679 666,18 66618
679 669,55 66955
681 672,14 67214
682 675,17 67517
685 678,17 67817
684 679,76 67976
688 681,78 68178
691 683,73 68373
690 685,44 68544
692 687,21 68721
695 688,63 68863
694 689,92 68992
695 691,20 69120
695 692,57 69257
697 693,85 69385
698 694,96 69496




