
Task 1. 20-Dimensional Schwefel“s function

Source code

#!/usr/bin/env python
-*- coding: utf-8 -*-

import random
import math

def create_population(gens, chromos):
 population = []
 for chrom in xrange(chromos):
 population.append([])
 for gen in xrange(gens):
 population[chrom].append(random.uniform(-5, 5))
 return population

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-60

-50

-40

-30

-20

-10

0

Average fitness for 20-D function per iteration

iteration

a
ve

ra
g

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-60

-50

-40

-30

-20

-10

0

Minimal fitnesses for 20-D function per iteration

iteration

m
in

 fi
tn

e
ss

def calc_fitness(arr):
 y = 0
 for x in arr:
 y += x * math.sin(x)
 return y

def find_best_chromos(population):
 list = []
 for chrom in population:
 list.append((calc_fitness(chrom), chrom))
 buble_sort(list)
 r = []
 for item in list[len(population)/2:]:
 r.append(item[1])
 return r

def create_childs(pop):
 size = len(pop)
 par1, par2 = random.randint(0, size-1), random.randint(0, size-1)
 cut_point = random.randint(0, len(pop[0]))
 child1 = pop[par1][:cut_point] + pop[par2][cut_point:]
 child2 = pop[par2][:cut_point] + pop[par1][cut_point:]
 return child1, child2

def buble_sort(A):
 for i in range(len(A)):
 for k in range(len(A) - 1, i, -1):
 if A[k][0] > A[k - 1][0]:
 swap(A, k, k — 1)

def swap(A, x, y):
 tmp = A[x]
 A[x] = A[y]
 A[y] = tmp

def get_avg_count(population):
 chromos = len(population)
 average_list = []
 for chrom in xrange(chromos):
 cur_counter = calc_fitness(population[chrom])
 average_list.append(cur_counter)
 return sum(average_list) / len(average_list)

def minimum(population):
 min = population[0][0]
 for chrom in population:
 fintess = calc_fitness(chrom)
 if min > fintess:
 min = fintess
 return min

def main():
 population = create_population(20, 20)
 print(population)
 for i in xrange(50):
 best_chromos = find_best_chromos(population)
 # print("best", best_chromos)
 population = create_new_generation(best_chromos)
 # print("new gen", population)

 avg = get_avg_count(population)
 min = minimum(population)
 print(str(i) + ";" + str(avg) + ";" + str(min))

def create_new_generation(best):
 new_generation = []
 for iter in xrange(len(best)):
 ch1, ch2 = create_childs(best)
 new_generation.append(ch1)
 new_generation.append(ch2)
 return new_generation
if __name__ == "__main__":
 main()

Result in table:

Task 2. 2-D version of Schwefels function

iteration average min
0 -14,1016524567 -25,1226466138
1 -19,6957604016 -39,4232909658
2 -29,2065585874 -39,4232909658
3 -34,8704761791 -42,4736244313
4 -38,039531003 -42,4736244313
5 -40,3064988617 -46,285814026
6 -42,8540607072 -48,1565795975
7 -45,561492543 -48,1565795975
8 -46,7535054189 -50,3749093639
9 -47,4695262449 -50,3749093639

10 -48,4729471689 -52,404269244
11 -49,7001876782 -52,404269244
12 -50,9866503766 -52,404269244
13 -52,404269244 -52,404269244
14 -52,404269244 -52,404269244

1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

Average fitness for 2-D function per iteration

iteration

a
ve

ra
g

e

Graphics of First iteration:

1 2 3 4 5 6 7 8 9 10
0

0,02

0,04

0,06

0,08

0,1

0,12

Minimal fitness for 2-D function per iteration

iteration

m
in

im
a

l f
itn

e
ss

Intermidiate iteration:

Final iteration:

Source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import random
import math
def create_population(gens, chromos):
 population = []
 for chrom in xrange(chromos):
 population.append([])
 for gen in xrange(gens):
 population[chrom].append(random.randint(0, 1))
 return population

def calc_fitness(arr):

 x = convert_x_from_binary_in_range(arr)
 return x * math.sin(x) * 5

def convert_x_from_binary_in_range(arr):
 binary = ""
 for bit in arr:
 binary += str(bit)
 x = int(binary, 2) / 1023.
 if arr[0] == 0:
 x *= -1
 return x

def find_best_chromos(population):
 list = []
 for chrom in population:
 list.append((calc_fitness(chrom), chrom))
 buble_sort(list)
 r = []
 for item in list[len(population)/2:]:
 r.append(item[1])
 return r

def create_childs(pop):
 size = len(pop)
 par1, par2 = random.randint(0, size-1), random.randint(0, size-1)
 cut_point = random.randint(0, len(pop[0]))
 child1 = pop[par1][:cut_point] + pop[par2][cut_point:]
 child2 = pop[par2][:cut_point] + pop[par1][cut_point:]
 return child1, child2

def buble_sort(A):
 for i in range(len(A)):
 for k in range(len(A) - 1, i, -1):
 if A[k][0] > A[k - 1][0]:
 swap(A, k, k — 1)

def swap(A, x, y):
 tmp = A[x]
 A[x] = A[y]
 A[y] = tmp

def get_avg_count(population):
 chromos = len(population)
 average_list = []
 for chrom in xrange(chromos):
 fitness = calc_fitness(population[chrom])
 average_list.append(fitness)
 return sum(average_list) / len(average_list)

def minimum(population):
 min = 9999.
 for chrom in population:
 fintess = calc_fitness(chrom)
 if min > fintess:
 min = fintess
 return min

def create_new_generation(best):
 new_generation = []
 for iter in xrange(len(best)):

 ch1, ch2 = create_childs(best)
 new_generation.append(ch1)
 new_generation.append(ch2)
 return new_generation

def print_point(population):
 for point in population:
 print(convert_x_from_binary_in_range(point))

def main():
 population = create_population(10, 20)
 print(population)
 for i in xrange(50):
 best_chromos = find_best_chromos(population)
 # print("best", best_chromos)
 population = create_new_generation(best_chromos)
 # print("new gen", population)
 avg = get_avg_count(population)
 min = minimum(population)
 print(str(i) + ";" + str(avg) + ";" + str(min))
 if i in [0, 3, 7]:
 print("iteration:" + str(i))
 print_point(population)

if __name__ == "__main__":
 main()

Results in table:

iteration average min
0 0,5005124262 0,0297879886
1 0,1193686831 0,0960284459
2 0,1023779864 0,0933508639
3 0,0974393856 0,0830158103
4 0,0932357485 0,0830158103
5 0,0923173585 0,0830158103
6 0,0902503478 0,0830158103
7 0,0855995737 0,0830158103
8 0,0830158103 0,0830158103
9 0,0830158103 0,0830158103

