Task 1. 20-Dimensional Schwefel“s function

average

min fitness

Average fitness for 20-D function per iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

iteration

Minimal fitnesses for 20-D function per iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

iteration

Source code

#!/usr/bin/env python
-*- coding: utf-8 -*-

import random
import math

def create population(gens, chromos):
population = []
for chrom in xrange(chromos):

population.append([])
for gen in xrange(gens):
population[chrom].append(random.uniform(-5, 5))

return population

def

def

def

def

def

def

def

def

calc_fitness(arr):
y =0
for x in arr:
y += X * math.sin(x)
return y

find best chromos(population):

list = []

for chrom in population:
list.append((calc_fitness(chrom), chrom))

buble sort(list)

r=1[]

for item in list[len(population)/2:1]:
r.append(item[1])

return r

create childs(pop):
size = len(pop)

parl, par2 = random.randint(@, size-1), random.randint(O,

cut_point = random.randint(@, len(pop[0]))

childl = popl[parl][:cut point] + pop[par2][cut point:]
child2 = poplpar2][:cut point] + pop[parl]l[cut point:]

return childl, child2

buble sort(A):
for i in range(len(A)):
for k in range(len(A) - 1, i, -1):
if A[k]I[O] > A[k - 11[0]:
swap(A, k, k — 1)

swap(A, X, y):

tmp = A[X]
Alx] = Aly]
Aly] = tmp

get avg count(population):
chromos = len(population)
average list = []

for chrom in xrange(chromos):

cur counter = calc fitness(population[chrom])

average list.append(cur counter)
return sum(average list) / len(average list)

minimum(population):
min = population[0][0O]
for chrom in population:
fintess = calc_fitness(chrom)
if min > fintess:
min = fintess
return min

main():
population = create population(20, 20)
print(population)

for i in xrange(50):

best chromos = find best chromos(population)

print("best", best chromos)

population = create new generation(best chromos)

print("new gen", population)

size-1)

avg get avg count(population)
min = minimum(population)
print(str(i) + ";" + str(avg) + ";" + str(min))

def create new generation(best):
new _generation = []
for iter in xrange(len(best)):

chl, ch2 = create childs(best)

new generation.append(chl)

new generation.append(ch2)
return new generation

if name == "_main__":
main()
Result in table:
iteration average min

0] -14,1016524567 -25,1226466138
1 -19,6957604016 -39,4232909658
2| -29,2065585874 -39,4232909658
3| -34,8704761791 -42,4736244313
4| -38,039531003 -42,4736244313
5 -40,3064988617 -46,285814026
6 -42,8540607072 -48,1565795975
7| -45,561492543 -48,1565795975
8| -46,7535054189 -50,3749093639
9 -47,4695262449 -50,3749093639
10| -48,4729471689 -52,404269244
11| -49,7001876782 -52,404269244
12| -50,9866503766 -52,404269244
13| -52,404269244 -52,404269244
14 -52,404269244 -52,404269244

Task 2. 2-D version of Schwefels function

0,6

0,5

0,4

0,3

average

0,2

0,1

Average fitness for 2-D function per iteration

iteration

Minimal fitness for 2-D function per iteration
0,12

0,1

0,08 i i i

0,06

minimal fitness

0,04

0,02

1 2 3 4 5 6 7

iteration

Graphics of First iteration:

10

45

40

3.5

3.0

2.5

20

15

10

0.5

AY

L

-4.0

45

-5.0
50 45 40 -35 -30 -25 -20 -15 -10 05

0

05 10 15 20 25 30 35 40 45 50

Intermidiate iteration:

45

40

3.5

3.0

2.5

20

15

10

0.5

AY

L

-4.0

45

-5.0
50 45 40 -35 -30 -25 -20 -15 -10 05

0

05 10 15 20 25 30 35 40 45 50

Final iteration:

45

40

3.5

3.0

2.5

20

15

10

0.5

L

-4.0

45

-5.0
50 45 40 -35 -30 -25 -20 -15 -10 05

0

05 10 15 20 25 30 35 40 45 50

Source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-
import random
import math
def create population(gens, chromos):
population = []
for chrom in xrange(chromos):
population.append([])
for gen in xrange(gens):

population[chrom].append(random.randint(0, 1))

return population

def calc fitness(arr):

x = convert x_from_binary in range(arr)
return x * math.sin(x) * 5

def convert x from binary in range(arr):
binary = ""
for bit in arr:
binary += str(bit)
x = int(binary, 2) / 1023.
if arr[0] == 0O:
X *= -1
return x

def find best chromos(population):

list = []

for chrom in population:
list.append((calc_fitness(chrom), chrom))

buble sort(list)

r=1[1

for item in list[len(population)/2:1]:
r.append(item[1])

return r

def create childs(pop):
size = len(pop)
parl, par2 = random.randint(@, size-1), random.randint(0, size-1)
cut_point = random.randint(@, len(pop[0]))
childl = poplparl][:cut point] + pop[par2][cut point:]
child2 = poplpar2][:cut point] + poplparl]l[cut point:]
return childl, child2

def buble sort(A):
for i in range(len(A)):
for k in range(len(A) - 1, i, -1):
if A[k][0] > A[k - 1]1[0]:
swap(A, k, k — 1)

def swap(A, x, y):

tmp = A[Xx]
Alx] = Alyl
Aly] = tmp

def get avg count(population):
chromos = len(population)
average list = []
for chrom in xrange(chromos):
fitness = calc_fitness(population[chrom])
average list.append(fitness)
return sum(average list) / len(average list)

def minimum(population):
min = 9999.
for chrom in population:
fintess = calc_fitness(chrom)
if min > fintess:
min = fintess
return min

def create new generation(best):
new generation = []
for iter in xrange(len(best)):

chl, ch2 = create childs(best)

new generation.append(chl)
new generation.append(ch2)
return new generation

def print point(population):
for point in population:

print(convert x from binary in range(point))

def main():
population = create population(10, 20)
print(population)

for i in xrange(50):
best chromos

print("best", best chromos)

population

print("new gen", population)
avg = get avg count(population)

find best chromos(population)

create new generation(best chromos)

min = minimum(population)
print(str(i) + ";" + str(avg) + ";" + str(min))
if i in [0, 3, 71]:
print("iteration:" + str(i))
print point(population)
if npame == "__main__":
main()
Results in table:
iteration average min
0/0,5005124262|0,0297879886
1/0,1193686831 0,0960284459
2/0,1023779864/0,0933508639
3/0,0974393856 0,0830158103
4/0,0932357485|0,0830158103
5/0,0923173585/ 0,0830158103
6|0,0902503478| 0,0830158103
7/0,0855995737|0,0830158103
8/0,0830158103/0,0830158103
9/0,0830158103/0,0830158103

