
TASK 1
Diagram 1. Average value of function by iteration

in x line we have current iteration, in y line – average value of function

data for diagram:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

y=x1*sin(x1)+....+x20*sin(x20)

iteration

a
ve

ra
g

e
 y

1 -8.430500144
2 -15.76774386
3 -22.39793034
4 -26.79711635
5 -31.63246185
6 -36.13916085
7 -38.75688102
8 -41.80212619
9 -43.59322746

10 -45.90531033
11 -45.90531033
12 -45.90531033
13 -45.90531033
14 -45.90531033
15 -45.90531033
16 -45.90531033

Diagram 2. Min value of function by iteration
in x line we have current iteration, in y line – average value of function

data for diagram:

Source code:
import random
from math import sin
def get_average_value(generation):
 av_list = []
 for i in generation:
 sum = fitness_function(i)
 av_list.append(sum)
 average = reduce(lambda x, y: x + y, av_list) / len(av_list)
 min_value = min(av_list)
 return (average, min_value)
def fitness_function(i):
 sum = 0
 for j in i:
 sum += j * sin(abs(j))
 return sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

y=x1*sin(x1)+....+x20*sin(x20)

iteration

m
in

 y

1 -20.69901443
2 -27.54180112
3 -31.59034381
4 -36.98150207
5 -40.99472658
6 -45.90531033
7 -45.90531033
8 -45.90531033
9 -45.90531033

10 -45.90531033
11 -45.90531033
12 -45.90531033
13 -45.90531033
14 -45.90531033
15 -45.90531033
16 -45.90531033

def main():
 generation = []
 for i in range(0, 20):
 hromosome = []
 for j in range(0, 20):
 hromosome.append(random.uniform(-5, 5))
 generation.append(hromosome)
 min_value = get_average_value(generation)[1]
 print(min_value)
 count = 0
 while count < 10:
 generation.sort(key=lambda x: fitness_function(x), reverse=False)
 fathers = generation[0:10]
 new_generation = []
 for i in range(0, 10):
 mother = random.randrange(0, 10)
 father = random.randrange(0, 10)
 rand_index = random.randrange(0, 20)
 first = fathers[mother][0:rand_index]
 first.extend(fathers[father][rand_index:20])
 second = fathers[father][0:rand_index]
 second.extend(fathers[mother][rand_index:20])
 new_generation.append(first)
 new_generation.append(second)
 new_generation.extend(fathers)
 new_max = get_average_value(new_generation)
 print(new_max)
 if new_max[1] < min_value:
 min_value = new_max[1]
 count = 0
 else:
 count += 1
 generation = new_generation
if __name__ == '__main__':
 main()

TASK 2
Diagram 2. Average value of function by iteration

data for diagram

1 2 3 4 5 6 7 8 9 10 11 12 13

-6

-5

-4

-3

-2

-1

0

y=xsin(|x|)

iteration

a
ve

ra
g

e
 y

1 -1.545168867
2 -2.903980635
3 -3.184621344
4 -4.794621373
5 -4.794621373
6 -4.794621373
7 -4.794621373
8 -4.794621373
9 -4.794621373

10 -4.794621373
11 -4.794621373
12 -4.794621373
13 -4.794621373

Diagram 2. Min value of function by iteration

data for diagram:

1 2 3 4 5 6 7 8 9 10 11 12 13

-6

-5

-4

-3

-2

-1

0

y=xsin(|x|)

iteration

m
in

 v
a

lu
e

 o
f y

1 -3.156383444
2 -4.794621373
3 -4.794621373
4 -4.794621373
5 -4.794621373
6 -4.794621373
7 -4.794621373
8 -4.794621373
9 -4.794621373

10 -4.794621373
11 -4.794621373
12 -4.794621373
13 -4.794621373

Diagram3. Dots on diagram on 1 iteration

As you can see dots are situated randomly

Diagram4. Dots on diagram on 3 iteration

As you can see a lot of dots are situated in local min (-2.0,-1.78) and only tree dots are situated near
by min (4.92435,-4.811223640288648)

Diagram5. Dots on diagram on 13 iteration

As you can see all dots are situated in min of this function by range(-5;5)

Source code:
import random
from math import sin
def get_average_value(generation):
 av_list = []
 for i in generation:
 sum = fitness_function(i)
 av_list.append(sum)
 average = reduce(lambda x, y: x + y, av_list) / len(av_list)
 min_value = min(av_list)
 return average, min_value
def fitness_function(i):
 return getResX(i)*sin(abs(getResX(i)))
def getResX(i):
 sum = 0
 for count in range(0,10):
 if i[count] == 1:
 sum += 2**count

 if i[0] == 1:
 sum *=-1
 return float(sum)/1023*5
def main():
 generation = []
 for i in range(0, 20):
 hromosome = []
 for j in range(0, 10):
 hromosome.append(random.getrandbits(1))
 generation.append(hromosome)
 min_value = get_average_value(generation)[1]
 print(min_value)
 count = 0
 Xs = []
 MAXs = []
 while count < 10:
 Xs.append((map(lambda x: getResX(x), generation)))
 generation.sort(key=lambda x: fitness_function(x), reverse=False)
 fathers = generation[0:10]
 new_generation = []
 for i in range(0, 10):
 mother = random.randrange(0, 10)
 father = random.randrange(0, 10)
 rand_index = random.randrange(0, 10)
 first = fathers[mother][0:rand_index]
 first.extend(fathers[father][rand_index:10])
 second = fathers[father][0:rand_index]
 second.extend(fathers[mother][rand_index:20])
 new_generation.append(first)
 new_generation.append(second)
 new_generation.extend(fathers)
 new_max = get_average_value(new_generation)
 MAXs.append(new_max)
 if new_max[0] < min_value:
 min_value = new_max[0]
 count = 0
 else:
 count += 1
 generation = new_generation
 print(Xs[0])
 print(Xs[2])
 print(Xs[len(Xs)-1])
 print(MAXs)
 print("------------------")
 print(generation[0])
if __name__ == '__main__':
 main()

