average y
1
N
a1

Diagram 1. Average value of function by iteration
in x line we have current iteration, in y line — average value of function

data for diagram:

OO NOOULSWNBE

el
= O

12
13
14
15
16

-8.430500144
-15.76774386
-22.39793034
-26.79711635
-31.63246185
-36.13916085
-38.75688102
-41.80212619
-43.59322746
-45.90531033
-45.90531033
-45.90531033
-45.90531033
-45.90531033
-45.90531033
-45.90531033

TASK 1

y=x1*sin(x1)+....+x20*sin(x20)

iteration

9

10

11

12

13

14

15

16

Diagram 2. Min value of function by iteration
in x line we have current iteration, in y line — average value of function

y=x1*sin(x1)+....+x20*sin(x20)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

miny
1
N
a1

-45 e |

iteration

data for diagram:

-20.69901443
-27.54180112
-31.59034381
-36.98150207
-40.99472658
-45.90531033
-45.90531033
-45.90531033
-45.90531033
-45.90531033
-45.90531033
12 -45.90531033
13 -45.90531033
14 -45.90531033
15 -45.90531033
16 -45.90531033

OO ~NO UL, WNBE

ol
(BN)

Source code:
import random
from math import sin
def get average value(generation):
av_list = []
for i in generation:
sum = fitness function(i)
av_list.append(sum)
average = reduce(lambda x, y: x + y, av_list) / len(av_list)
min value = min(av_1list)
return (average, min_value)
def fitness function(i):
sum = 0
for j in i:
sum += j * sin(abs(j))
return sum

def main():
generation = []
for i in range(0, 20):
hromosome = []
for j in range(0, 20):
hromosome.append(random.uniform(-5, 5))
generation.append(hromosome)
min_value = get average value(generation)[1]
print(min_value)
count = 0
while count < 10:
generation.sort(key=lambda x: fitness function(x), reverse=False)
fathers = generation[0:10]
new generation = []
for i in range(0, 10):
mother = random.randrange(0, 10)
father = random.randrange(0, 10)
rand_index = random.randrange(0, 20)
first = fathers[mother][0:rand index]
first.extend(fathers[father][rand index:20])
second = fathers[father][0:rand index]
second.extend(fathers[mother][rand index:20])
new_generation.append(first)
new_generation.append(second)
new generation.extend(fathers)
new_max = get average value(new generation)
print(new max)
if new max[1l] < min value:
min_value = new max[1]
count = 0
else:
count +=1
generation = new _generation
if name == "'_main__':
main()

average y
1
w

TASK 2

Diagram 2. Average value of function by iteration

data for diagram

1

©Coo~NOOOTh~,WDN

ol
= O

12

(=Y
w

-1.545168867
-2.903980635
-3.184621344
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373

y=xsin(|x|)

13

iteration

min value ofy
1
w

Diagram 2. Min value of function by iteration

y=xsin(|x[)

13

data for diagram:

OO ~NOULS WNPR

ol
= O

12

(=Y
w

-3.156383444
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373
-4.794621373

Diagram3. Dots on diagram on 1 iteration

45

40

3.5

a0

25

20

AY

¥ =

5.0 45 40 -35 -30 -25 -20 -15 -10 -05

0

05 10 15 20 25 3J0 35 40 A5 5D

As you can see dots are situated randomly

Diagram4. Dots on diagram on 3 iteration

AY

45
40
3.5
3.0
25

20

Y =

50 45 40 35 30 -25 20 -15 -10 05 0 05 10 15 20 25 30 35 40 45 50

As you can see a lot of dots are situated in local min (-2.0,-1.78) and only tree dots are situated near
by min (4.92435,-4.811223640288648)

Diagram5. Dots on diagram on 13 iteration

AY

45
40
3.5
3.0
25

20

¥ =

50 45 40 35 30 -25 20 -15 -10 05 0 05 10 15 20 25 30 35 40 45 50

As you can see all dots are situated in min of this function by range(-5;5)

Source code:
import random
from math import sin
def get average value(generation):
av_list = []
for i in generation:
sum = fitness function(i)
av_list.append(sum)
average = reduce(lambda x, y: x + y, av_list) / len(av_list)
min value = min(av_list)
return average, min_value
def fitness function(i):
return getResX(i)*sin(abs(getResX(1i)))
def getResX(i):
sum = 0
for count in range(0,10):
if i[count] ==
sum += 2**count

if i[0] ==

sum *=-1
return float(sum)/1023*5
def main():

generation = []
for i in range(0, 20):
hromosome = []
for j in range(0, 10):
hromosome.append(random.getrandbits(1))
generation.append(hromosome)
min value = get average value(generation)[1]
print(min_value)

count = 0
Xs =[]
MAXs = []

while count < 10:

Xs.append((map(lambda x: getResX(x), generation)))
generation.sort(key=lambda x: fitness function(x), reverse=False)
fathers = generation[0:10]
new generation = []
for i in range(0, 10):
mother = random.randrange(0, 10)
father = random.randrange(0, 10)
rand_index = random.randrange(0, 10)
first = fathers[mother][0:rand index]
first.extend(fathers[father][rand index:10])
second = fathers[father][0:rand index]
second.extend(fathers[mother][rand index:20])
new_generation.append(first)
new generation.append(second)
new_generation.extend(fathers)
new_max = get average value(new generation)
MAXs .append (new_max)
if new max[0] < min_value:
min value = new max[0]
count = 0
else:
count +=1
generation = new generation
print(Xs[0])
print(Xs[2])
print(Xs[len(Xs)-1])

print (MAXs)
print("-----mmmemaaaaaas ")
print(generation[0])

if pame == "'__main__':

main()

