
Task-1

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();
void getPopulation();
int ChromosomeSumm(const Individual& population);
bool ChromosomeSort(const Individual& population1, const Individual& population2);
void print();
void crossing();

Population population;

int main()
{
 srand(time(NULL));

 makePopulation();
 getPopulation();

 sort(population.begin(), population.end(), ChromosomeSort);

 ofstream file("DataForGraph.txt", ios::out);

 file << "Max Average";
 file << '\n';

 for (int i = 0; i < 20; i++)
 {
 crossing();

 sort(population.begin(), population.end(), ChromosomeSort);

 int Max = 0;
 int Mean = 0;

 for (int k = 0; k < population[0].size(); k++) {
 Max += population[0][k];
 }

 for (int j = 0; j < population.size(); j++) {
 for (int k = 0; k < population[j].size(); k++) {
 Mean += population[j][k];
 }
 }
 Mean = Mean / 20;

 file << Max << " " << Mean;
 file << '\n';
 }

 file.close();

 print();

 system("Pause");
 return 0;
}

void makePopulation() {
 ofstream file("population.txt", ios::out);
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 20; j++) {
 file << ((rand() % 1000) - 500)/100.0;
 if (j == 20 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void getPopulation() {
 ifstream file("population.txt");
 for (int i = 0; i < 20; i++) {
 Individual row;
 for (int j = 0; j < 20; j++) {
 double value;
 file >> value;
 row.push_back(value);
 }
 population.push_back(row);
 }
 file.close();
}

int ChromosomeSumm(const Individual& population) {
 int summ = 0;
 for (int i = 0; i < population.size(); i++) {
 summ += population[i] * sin(abs(population[i]));
 }
 return summ;
}

bool ChromosomeSort(const Individual& population1, const Individual& population2) {
 return ChromosomeSumm(population1) > ChromosomeSumm(population2);
}

void print(){
 ofstream file("sort.txt", ios::out);
 for (int i = 0; i < population.size(); i++) {
 int tmp = 0;
 for (int j = 0; j < population[i].size(); j++) {
 file << population[i][j];
 if (j == 20 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void crossing() {
 int CrossingPoint;
 int FirstParent, SecondParent;
 Population resultPopulation;

 for (int i = 0; i < 10; i++){
 CrossingPoint = rand() % 20;
 FirstParent = rand() % 10;
 SecondParent = rand() % 10;
 if (FirstParent == SecondParent){

 while (FirstParent != SecondParent)
 {
 SecondParent = rand() % 10;
 }
 }

 Individual Child1, Child2;

 for (int j = 0; j < population[i].size(); j++)
 {
 if (j < CrossingPoint)
 {
 Child1.push_back(population[FirstParent][j]);
 Child2.push_back(population[SecondParent][j]);
 }
 else
 {
 Child1.push_back(population[SecondParent][j]);
 Child2.push_back(population[FirstParent][j]);
 }
 }
 resultPopulation.push_back(Child1);
 resultPopulation.push_back(Child2);
 }
 population = resultPopulation;
}

-22,5

-22

-21,5

-21

-20,5

-20

-19,5

-19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Max values

Task – 2

#include "stdafx.h"
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();
void getPopulation();
int ChromosomeSumm(const Individual& population);
bool ChromosomeSort(const Individual& population1, const Individual& population2);
void print();
void crossing();
double x, y;

Population population;

int main()
{
 srand(time(NULL));

 makePopulation();
 getPopulation();

 sort(population.begin(), population.end(), ChromosomeSort);

 ofstream file("DataForGraph.txt", ios::out);

 file << "X Y";
 file << '\n';

 for (int i = 0; i < 10; i++)
 {

 file << "Iteration N " << i + 1;
 file << '\n';

-4,5

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average values

 crossing();

 sort(population.begin(), population.end(), ChromosomeSort);

 for (int j = 0; j < population.size(); j++) {
 double summ = 0;
 summ = population[i][1] * 1 + population[i][2] * 2 + population[i][3]
* 4 + population[i][4] * 8 + population[i][5] * 16 + population[i][6] * 32 +
population[i][7] * 64 + population[i][8] * 128 + population[i][9] * 256;
 if (population[i][0] == 1){
 summ = summ * 1;
 }
 else summ = summ * -1;
 summ = summ;
 x = summ / 1023 * 5;
 summ = summ * sin(abs(summ));
 y = summ / 1023 * 5;
 file << x << " " << y;
 file << '\n';
 }
 }

 file.close();

 print();
 system("Pause");
 return 0;
}

void makePopulation() {
 ofstream file("population.txt", ios::out);
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 10; j++) {
 file << rand() % 2;
 if (j == 10 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void getPopulation() {
 ifstream file("population.txt");
 for (int i = 0; i < 20; i++) {
 Individual row;
 for (int j = 0; j < 10; j++) {
 double value;
 file >> value;
 row.push_back(value);
 }
 population.push_back(row);
 }
 file.close();
}

int ChromosomeSumm(const Individual& population) {
 double summ = 0;
 summ = population[1] * 1 + population[2] * 2 + population[3] * 4 + population[4] *
8 + population[5] * 16 + population[6] * 32 + population[7] * 64 + population[8] * 128 +
population[9] * 256;
 if (population[0] == 1){
 summ = summ * 1;
 }
 else summ = summ * -1;
 summ = summ / 1023 * 5;

 summ = summ * sin(abs(summ));
 return summ;
}

bool ChromosomeSort(const Individual& population1, const Individual& population2) {
 return ChromosomeSumm(population1) > ChromosomeSumm(population2);
}

void print(){
 ofstream file("sort.txt", ios::out);
 for (int i = 0; i < population.size(); i++) {
 int tmp = 0;
 for (int j = 0; j < population[i].size(); j++) {
 file << population[i][j];
 if (j == 10 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void crossing() {
 int CrossingPoint;
 int FirstParent, SecondParent;
 Population resultPopulation;

 for (int i = 0; i < 10; i++){
 CrossingPoint = rand() % 10;
 FirstParent = rand() % 10;
 SecondParent = rand() % 10;
 if (FirstParent == SecondParent){
 while (FirstParent != SecondParent)
 {
 SecondParent = rand() % 10;
 }
 }

 Individual Child1, Child2;

 for (int j = 0; j < population[i].size(); j++)
 {
 if (j < CrossingPoint)
 {
 Child1.push_back(population[FirstParent][j]);
 Child2.push_back(population[SecondParent][j]);
 }
 else
 {
 Child1.push_back(population[SecondParent][j]);
 Child2.push_back(population[FirstParent][j]);
 }
 }
 resultPopulation.push_back(Child1);
 resultPopulation.push_back(Child2);
 }
 population = resultPopulation;
}

