Task-1

#include
#include
#include
#include
#include
#include
#include

"stdafx.h"
<iostream>
<fstream>
<vector>
<algorithm>
<math.h>
<time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();

void getPopulation();

int ChromosomeSumm(const Individual& population);

bool ChromosomeSort(const Individual& populationl, const Individual& population2);
void print();

void crossing();

Population population;

int main()

{

srand(time(NULL));

makePopulation();
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);

ofstream file("DataForGraph.txt", ios::out);

file << "Max Average";
file << '\n';

for (int i = 0; i < 20; i++)

{

}

crossing();
sort(population.begin(), population.end(), ChromosomeSort);

int Max = 9;
int Mean = 0;

for (int k = @; k < population[@].size(); k++) {
Max += population[@][k];
}

for (int j = @; j < population.size(); j++) {
for (int k = @; k < population[j].size(); k++) {
Mean += population[j][k];
}
}

Mean = Mean / 20;

file << Max <<
file << '\n';

<< Mean;

file.close();

print();

system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; i < 20; i++) {
for (int j = 0; j < 20; j++) {
file << ((rand() % 1000) - 500)/100.0;
if (j == 20 - 1) file << '\n';

else file << ;

}

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; i < 20; i++) {
Individual row;
for (int j = 0; j < 20; j++) {
double value;
file >> value;
row.push_back(value);

}

population.push_back(row);

file.close();

}

int ChromosomeSumm(const Individual& population) {
int summ = 0;
for (int i = @; i < population.size(); i++) {
summ += population[i] * sin(abs(population[i]));
}

return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) > ChromosomeSumm(population2);

}

void print(){
ofstream file("sort.txt", ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = @; j < population[i].size(); j++) {
file << population[i][j];
if (j == 20 - 1) file << '\n';

else file << ;

}
}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; 1 < 10; i++){
CrossingPoint = rand() % 20;
FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){

while (FirstParent != SecondParent)

{
}

SecondParent = rand() % 10;

}

Individual Childl, Child2;

for (int j = 0; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
¥
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
¥
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;

Max values
-19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-19,5
-20
-20,5
-21
-21,5

-22

-22,5

Average values

1 23 4 5 6 7 8 9 10 11 12 13 14 15

-4,5
Task—2

#include "stdafx.h"
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();
void getPopulation();
int ChromosomeSumm(const Individual& population);

16 17 18 19 20

bool ChromosomeSort(const Individual& populationl, const Individual& population2);

void print();
void crossing();
double x, y;

Population population;
int main()
{

srand(time(NULL));

makePopulation();
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);

ofstream file("DataForGraph.txt", ios::out);

file << "X Y";
file << '\n';
for (int i = @; i < 10; i++)

{

file << "Iteration N " << i + 1;
file << "\n';

crossing();
sort(population.begin(), population.end(), ChromosomeSort);

for (int j = ©; j < population.size(); j++) {

double summ = 0;

summ = population[i][1] * 1 + population[i][2] * 2 + population[i][3]
* 4 + population[i][4] * 8 + population[i][5] * 16 + population[i][6] * 32 +
population[i][7] * 64 + population[i][8] * 128 + population[i][9] * 256;

if (population[i][@] == 1){

summ = summ * 1;

}

else summ = summ * -1;

summ = summ;

X = summ / 1023 * 5;

summ = summ * sin(abs(summ));

y = summ / 1023 * 5;

file << x << " " K y;

file << '\n';

}

file.close();

print();
system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; 1 < 20; i++) {
for (int j = 0; j < 10; j++) {
file << rand() % 2;
if (j == 10 - 1) file << '\n';

else file << ;

}

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; i < 20; i++) {
Individual row;
for (int j = 0; j < 10; j++) {
double value;
file >> value;
row.push_back(value);
}
population.push_back(row);
¥

file.close();

}

int ChromosomeSumm(const Individual& population) {

double summ = 0;

summ = population[1] * 1 + population[2] * 2 + population[3] * 4 + population[4] *
8 + population[5] * 16 + population[6] * 32 + population[7] * 64 + population[8] * 128 +
population[9] * 256;

if (population[@] == 1){

summ = summ * 1;
}

else summ = summ * -1;
summ = summ / 1023 * 5;

summ = summ * sin(abs(summ));
return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) > ChromosomeSumm(population2);

}

void print(){
ofstream file("sort.txt", ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = @; j < population[i].size(); j++) {
file << population[i][j];
if (j == 10 - 1) file << '\n’;

else file << ;

}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; i < 10; i++){
CrossingPoint = rand() % 10;
FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){
while (FirstParent != SecondParent)

{
}

SecondParent = rand() % 10;
}
Individual Childl, Child2;

for (int j = 0; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
}
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
}
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;

