NOT FINISH
WORK CODE:
// siip2.cpp: ompenensieT TOUKy BX0/a sl KOHCOJIBHOTO MPHIIOKEHUS.

I

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>
#include <string>
#include <string.h>

using namespace std;

Il fitness
double fitness(const vector<double>& chromosoma) {
double summ = 0;
for (double i = 0; i < chromosoma.size() - 1; i++) {
summ += (chromosoma[i] * sin(abs(double(chromosoma([i]))));

}

return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {
return fitness(a) > fitness(b);
}

double main()
{
srand(time(NULL));
double sizeOfPopulation, rod2Nomer,min1, min, average, min2,averagel,;
min = 0;
minl = 0;
min2 = 0;
average = 0;
averagel = 0;
sizeOfPopulation = 20;

vector<vector<double>> population;
/[started population

for (double i = 0; i < sizeOfPopulation; i++) {
vector<double> chromosoma;

chislo);

for (double j = 0; j < 20; j++) {
chromosoma.push_back((rand() % 1000)/100 - 5);
¥

population.push_back(chromosoma);

}

/I cout started population
/lcout << "Started population:" << endl;
for (auto e = 0;e < population.size(); e++) {

for (auto 1= 0; I <e; I++)
average += fitness(e);

if (minl > fitness(e)){
minl = fitness(e);
¥

}

cout << "min =" << minl << endl;
cout << "AVERAGE =" << average / 100000 << endl;
average = 0;
for (double steps = 0; steps < 100; steps++) {
/I choose parents and create child
vector<vector<double>> potomki;
for (double i = 0; i < sizeOfPopulation; i++) {
double rod1Nomer = rand() % (population.size()/2);
vector<double> roditel_1 = population[rod1Nomer];
double rod2Nomer = rand() % (population.size()/2);
vector<double> roditel_2 = population[rod2Nomer];
/l create
vector<double> potomok_1, potomok_2;

double chislo = rand() % (roditel_1.size() - 2) + 1;
potomok_1.insert(potomok_1.end(), roditel_1.begin(), roditel_1.begin() +

potomok_1.insert(potomok_1.end(), roditel_2.begin() + chislo,

roditel_2.end());

chislo);

potomok_2.insert(potomok_2.end(), roditel_2.begin(), roditel_2.begin() +

potomok_2.insert(potomok_2.end(), roditel_1.begin() + chislo,

roditel_1.end());

potomki.push_back(potomok_1);
potomki.push_back(potomok_2);

}

// mutation
double ver_mutazii = 0.001; // 0.001
for (double i = 0; i < potomki.size(); i++) {
double rn = rand() % 100 + 1;
if (rn < ver_mutazii) {
double pos = rand() % (potomki[0].size() - 4) + 2;
double buff = potomki[i][pos - 1];
potomKki[i][pos - 1] = potomki[i][pos + 1];
potomki[i][pos + 1] = buff;

}

cout << "[teration: " << steps + 1 <<endl;
[*for (auto e : population) {
for (auto | : e)

average += fitness(e);

if (min < fitness(e)){
min = fitness(e);
¥

}

cout << "min =" << min << endl;
cout << "AVERAGE =" << average / 100000 << endl;

if ((min == min2) && (average == averagel))

cout << "Finished population:” << endl;

cout << "min =" << min2 << endl;

cout << "AVERAGE =" << average / 100000 << endl;
break;

}

averagel = average;
min2 = min;
average = 0;

min =0;

*/

/I select new pop

vector<vector<double>> vse;

vse.insert(vse.end(), population.begin(), population.end());
vse.insert(vse.end(), potomki.begin(), potomki.end());
sort(vse.begin(), vse.end(), func);

population.clear();
for (double i = 0; i < (sizeOfPopulation / 2); i++) {

population.push_back(vse.at(i));

}
for (double k = 0; k < (sizeOfPopulation - (sizeOfPopulation / 2)); k++){

double rn = (rand() % 18) + 10;
population.push_back(vse.at(rn));

}

system("'Pause");
return O;

