Contemporary Intelligent Intellectual Technology (CIIT)
Practice #2 (21/09/2016)
Siarhei Savaniuk (Al-10)

Task Nel (20-Dimensional Schwefel’s function)

The task is to minimise y = x1 sin(|x1]) + x2 sin(|x2|) + - - - + x20 sin(|x20]) in
the following way:

(1) Represent each of xi(i=1, - - -, 20) by a chromosome with 20 genes.
(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change.

Source code (write in Java):

File Individual.java

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {
public static final int GENE LENGTH = 20;

private double[] genes;
private double fitnessValue;

public Individual (boolean initialize) {
genes = new double[GENE LENGTH] ;

if (initialize) {
generateIndividual () ;
fitnessValue = getFitness|();

}

public Individual (double[] genes) {
this.genes = genes;
fitnessValue = getFitness|();

}

public double getFitnessValue() {
return fitnessValue;

}

public void setFitnessValue (int fitnessValue) {
this.fitnessValue = fitnessValue;

}

public void generateIndividual () {
for (int i = 0; 1 < GENE_LENGTH; ++i) {
genes[i] = ThreadLocalRandom.current () .nextDouble(6.0) - 5.0;
}
}

public double getFitness () {

double fitness = 0.0;
for (int i = 0; i < GENE LENGTH; +4+1) {
fitness += genes[i] * Math.sin(Math.abs(genes[i]))

}

return fitness;

}

public double|[] getGenesBeforeCutPoint (int cutPoint) {
double|[] genes = new double[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes;

}

public double[] getGenesAfterCutPoint (int cutPoint) {
double[] genes = new double[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

@Override
public String toString () {
return "Individual{" +

"fitnessValue=" + fitnessValue +
", genes=" + Arrays.toString(genes) +
v}v + v\nv;

}

@QOverride

public int compareTo (Individual o) {

return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue()
== fitnessValue) ? 0 : -1);

}
}

File Population.java:

import java.util.Arrays;

class Population ({
public static final int POPULATION SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int i = 0; i < POPULATION SIZE; +4+1) {
individuals[i] = new Individual (true);

}

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];
System.arraycopy(individuals, 0, this.individuals, O,
individuals.length) ;

}

public Individual getIndividual (int index) {
return individuals[index];

}

public void addIndividual (int index, Individual individual) {
individuals[index] = individual;

}

public Individual[] getHalfFittestIndividuals () {
Individual[] fittestIndividuals =

21;

System.arraycopy(individuals, 0, fittestIndividuals, O,

fittestIndividuals.length) ;

return fittestIndividuals;
}
public double getMaxFitness () {
return individuals[0].getFitnessValue();

}

public double getAverageFitness () {
double sum = 0;

for (int i = 0; i < POPULATION_SIZE; ++1i) {
sum += individuals[i].getFitnessValue()

}

return sum / POPULATION SIZE;
}

public Individual[] getAllIndividuals() {
return individuals;

}

@QOverride

public String toString() {

return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {
private Population population;

public GeneticAlgorithm (Population population) {
this.population = population;

}

public Population run() {
Arrays.sort (population.getAllIndividuals());

Population halfPopulation = new
Population (population.getHalfFittestIndividuals());
Population nextGeneration = new
Population (halfPopulation.getAllIndividuals());

new Individual [POPULATION SIZE /

for (int i = 0, j = Population.POPULATION SIZE / 2; i <
Population.POPULATION_SIZE /4y ++i, 3 += 2) |
Individual[] parents = chooseParents (halfPopulation);

int cutPoint =
ThreadLocalRandom. current () .nextInt (Individual .GENE_LENGTH) ;

Individual[] descendants = crossover (parents, cutPoint);

nextGeneration.addIndividual (j, descendants[0]);
nextGeneration.addIndividual (j + 1, descendants[l]);

}

population = nextGeneration;
Arrays.sort (population.getAllIndividuals());

return population;

}

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individuall[]
{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (10)),

fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (10)) };
}

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individual[2];

double|[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[l].getGenesAfterCutPoint (curPoint)) ;
double|[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[1l].getGenesBeforeCutPoint (curPoint)) ;

descendants[0] = new Individual (firstDescendantGenes) ;
descendants[1] new Individual (secondIndividualGenes) ;

return descendants;

}

private double[] concat (double[] genesl, double[] genes2) {
double[] genes = new double[Individual.GENE LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy(genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:

import java.io.*;

import java.util.ArrayList;
import java.util.List;

public class Main {

public static void main (String[] args) throws IOException {
Population population = new Population (true);

GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

List<Double> max = new ArrayList<>();
List<Double> average = new ArrayList<>();

double min 0.0, copyMin = 0.0;

for (int i = 0; i < 100; ++1) {
Population newPopulation = geneticAlgorithm.run();
min = newPopulation.getMaxFitness () ;

System.out.println("Min = " + min + ", Average = " +
newPopulation.getAverageFitness());

max.add (newPopulation.getMaxFitness());

average.add (newPopulation.getAverageFitness ());

}

System.out.println ("MAX") ;
for (Double val : max) {
System.out.printf ("%.2£f\n", val);

}

System.out.println ("\n\nAVERAGE") ;
for (Double val : average) {
System.out.printf ("%.2£f\n", val);

Results:
The graph of fitness vs generation:

Graph of fitness vs generation

0 20 40 60 80 100 120

-10
-15

-20

fitness

-25

-30

-35

generation

The graph of average vs generation:

Graph of average vs generation

0 20 40 60 80 100 120

-10
-15

-20

average

-25

-30

-35

-40
generation

Task #2 (2-D version of Schwefel's function)
The task is to minimise y = x sin(|x|) in the following way:

(1) Represent value of x by a 10-bit binary chromosome.
(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness doesn’t change.

Source code (written in Java)

File Individual.java:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {
public static final int GENE_LENGTH = 10;
private int[] genes;
private double fitnessValue;

private double x;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH] ;

if (initialize) {

generatelIndividual () ;
fitnessValue = getFitness|();

}

public Individual (int[] genes) {
this.genes = genes;
fitnessValue = getFitness|();

}

public double getFitnessValue() {
return fitnessValue;

}

public void setFitnessValue (int fitnessValue) {
this.fitnessValue = fitnessValue;

}

public double getX() {
return x;

}

public void generateIndividual () {
for (int i = 0; i < GENE_LENGTH; ++1i) |
genes[i] = ThreadLocalRandom.current() .nextInt (2);

}

public double getFitness () {
X = convertToDecimal () ;
return x * Math.sin(Math.abs((x)));

}

private double convertToDecimal () {
int dec = 0;
for (int i = 0; 1 < 10; ++1i) {
if (genes[i] == 1) {
dec += 1 * Math.pow(2, 1);

}
dec = (genes[0] == 1) ? -dec: dec;
return dec * 5.0 / 1023;

}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes;

}

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

@Override
public String toString() {
return "Individual{" +
"fitnessValue=" + fitnessValue +
", genes=" + Arrays.toString(genes) +
v}v + v\nv,.

@QOverride
public int compareTo (Individual o) {
return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue ()

== fitnessValue) ? 0 : -1);
}

File Population.java:

import java.util.Arrays;

class Population {
public static final int POPULATION SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int i = 0; i < POPULATION_SIZE; ++1i) {
individuals[i] = new Individual (true);

}

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];
System.arraycopy (individuals, 0, this.individuals, O,
individuals.length) ;
}

public Individual getIndividual (int index) {
return individuals[index];

}

public void addIndividual (int index, Individual individual) {
individuals[index] = individual;

}

public Individual[] getHalfFittestIndividuals() {
Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

System.arraycopy (individuals, 0, fittestIndividuals, O,
fittestIndividuals.length) ;

return fittestIndividuals;

}

public Individual[] getFiveIndividuals() {
Individual[] fittestIndividuals = new Individual [POPULATION SIZE /

4];

System.arraycopy (individuals, 0, fittestIndividuals, O,
fittestIndividuals.length) ;

return fittestIndividuals;

}

public double getMaxFitness () {
return individuals[0].getFitnessValue () ;

}

public double getAverageFitness () {
double sum = 0;

for (int i = 0; i1 < POPULATION SIZE; ++i) {
sum += individuals[i].getFitnessValue();

}

return sum / POPULATION SIZE;
}

public Individual[] getAllIndividuals() {
return individuals;

}

@QOverride

public String toString() {

return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {
private Population population;

public GeneticAlgorithm (Population population) {
this.population = population;

}

public Population run () {
Arrays.sort (population.getAllIndividuals());

Population halfPopulation = new
Population (population.getHalfFittestIndividuals());

Population nextGeneration = new
Population (halfPopulation.getAllIndividuals());

for (int i = 0, j = Population.POPULATION SIZE / 2; i <

Population.POPULATION SIZE /4y ++i, 7 += 2) {
Individual[] parents = chooseParents (halfPopulation);

int cutPoint =
ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH);

Individual[] descendants = crossover (parents, cutPoint);

nextGeneration.addIndividual (j, descendants[0]);
nextGeneration.addIndividual (j + 1, descendants[1l]);

}
population = nextGeneration;
Arrays.sort (population.getAllIndividuals());

//
// population = population.getHalfFittestIndividuals() ;

return population;

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (10)),

fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (10)) };
}

private Individual[] crossover (Individual[] parents, int curPoint) ({
Individual|[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[1l].getGenesAfterCutPoint (curPoint));
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[1l].getGenesBeforeCutPoint (curPoint));

descendants[0] = new Individual (firstDescendantGenes) ;
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:

import java.io.*;

import java.util.ArrayList;
import java.util.List;

public class Main {
public static void main(String[] args) throws IOException ({

Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

List<Double> max = new ArrayList<>();
List<Double> average = new ArrayList<>();

double min = 0.0, copyMin = 0.0;

for (int 1 = 0; 1 < 10; ++1i) {
System.out.println ("Iteration #" + (i + 1));
Population newPopulation = geneticAlgorithm.run();
min = newPopulation.getMaxFitness();

System.out.println("Min = " + min + ", Average = " +
newPopulation.getAverageFitness());
for (Individual individuals : newPopulation.getAllIndividuals())

{
System.out.println (individuals.getX());

}
max.add (newPopulation.getMaxFitness());
average.add (newPopulation.getAverageFitness ());

