
Contemporary Intelligent Intellectual Technology (CIIT)

Practice #2 (21/09/2016)

Siarhei Savaniuk (AI-10)

Task №1 (20-Dimensional Schwefel's function)

 The task is to minimise y = x1 sin(|x1|) + x2 sin(|x2|) + · · · + x20 sin(|x20|) in

the following way:

(1) Represent each of xi(i = 1, · · · , 20) by a chromosome with 20 genes.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness dosen’t change.

Source code (write in Java):

File Individual.java

import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {

 public static final int GENE_LENGTH = 20;

 private double[] genes;

 private double fitnessValue;

 public Individual(boolean initialize) {

 genes = new double[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

 fitnessValue = getFitness();

 }

 }

 public Individual(double[] genes) {

 this.genes = genes;

 fitnessValue = getFitness();

 }

 public double getFitnessValue() {

 return fitnessValue;

 }

 public void setFitnessValue(int fitnessValue) {

 this.fitnessValue = fitnessValue;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextDouble(6.0) - 5.0;

 }

 }

 public double getFitness() {

 double fitness = 0.0;

 for (int i = 0; i < GENE_LENGTH; ++i) {

 fitness += genes[i] * Math.sin(Math.abs(genes[i]));

 }

 return fitness;

 }

 public double[] getGenesBeforeCutPoint(int cutPoint) {

 double[] genes = new double[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public double[] getGenesAfterCutPoint(int cutPoint) {

 double[] genes = new double[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "fitnessValue=" + fitnessValue +

 ", genes=" + Arrays.toString(genes) +

 '}' + '\n';

 }

 @Override

 public int compareTo(Individual o) {

 return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue()

== fitnessValue) ? 0 : -1);

 }

}

File Population.java:
import java.util.Arrays;

class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void addIndividual(int index, Individual individual) {

 individuals[index] = individual;

 }

 public Individual[] getHalfFittestIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

 public double getMaxFitness() {

 return individuals[0].getFitnessValue();

 }

 public double getAverageFitness() {

 double sum = 0;

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 sum += individuals[i].getFitnessValue();

 }

 return sum / POPULATION_SIZE;

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Arrays.sort(population.getAllIndividuals());

 Population halfPopulation = new

Population(population.getHalfFittestIndividuals());

 Population nextGeneration = new

Population(halfPopulation.getAllIndividuals());

 for (int i = 0, j = Population.POPULATION_SIZE / 2; i <

Population.POPULATION_SIZE / 4; ++i, j += 2) {

 Individual[] parents = chooseParents(halfPopulation);

 int cutPoint =

ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH);

 Individual[] descendants = crossover(parents, cutPoint);

 nextGeneration.addIndividual(j, descendants[0]);

 nextGeneration.addIndividual(j + 1, descendants[1]);

 }

 population = nextGeneration;

 Arrays.sort(population.getAllIndividuals());

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 double[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 double[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private double[] concat(double[] genes1, double[] genes2) {

 double[] genes = new double[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
import java.io.*;

import java.util.ArrayList;

import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 List<Double> max = new ArrayList<>();

 List<Double> average = new ArrayList<>();

 double min = 0.0, copyMin = 0.0;

 for (int i = 0; i < 100; ++i) {

 Population newPopulation = geneticAlgorithm.run();

 min = newPopulation.getMaxFitness();

 System.out.println("Min = " + min + ", Average = " +

newPopulation.getAverageFitness());

 max.add(newPopulation.getMaxFitness());

 average.add(newPopulation.getAverageFitness());

 }

 System.out.println("MAX");

 for (Double val : max) {

 System.out.printf("%.2f\n", val);

 }

 System.out.println("\n\nAVERAGE");

 for (Double val : average) {

 System.out.printf("%.2f\n", val);

 }

 }

}

Results:

The graph of fitness vs generation:

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120

fi
tn

es
s

generation

Graph of fitness vs generation

The graph of average vs generation:

Task #2 (2-D version of Schwefel's function)

The task is to minimise 𝑦 = 𝑥 sin(|𝑥|) in the following way:

 (1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness doesn’t change.

Source code (written in Java)

File Individual.java:

import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {

 public static final int GENE_LENGTH = 10;

 private int[] genes;

 private double fitnessValue;

 private double x;

 public Individual(boolean initialize) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

 fitnessValue = getFitness();

 }

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120

av
er

ag
e

generation

Graph of average vs generation

 }

 public Individual(int[] genes) {

 this.genes = genes;

 fitnessValue = getFitness();

 }

 public double getFitnessValue() {

 return fitnessValue;

 }

 public void setFitnessValue(int fitnessValue) {

 this.fitnessValue = fitnessValue;

 }

 public double getX() {

 return x;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(2);

 }

 }

 public double getFitness() {

 x = convertToDecimal();

 return x * Math.sin(Math.abs((x)));

 }

 private double convertToDecimal() {

 int dec = 0;

 for (int i = 0; i < 10; ++i) {

 if (genes[i] == 1) {

 dec += 1 * Math.pow(2, i);

 }

 }

 dec = (genes[0] == 1) ? -dec: dec;

 return dec * 5.0 / 1023;

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "fitnessValue=" + fitnessValue +

 ", genes=" + Arrays.toString(genes) +

 '}' + '\n';

 }

 @Override

 public int compareTo(Individual o) {

 return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue()

== fitnessValue) ? 0 : -1);

 }

}

File Population.java:
import java.util.Arrays;

class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void addIndividual(int index, Individual individual) {

 individuals[index] = individual;

 }

 public Individual[] getHalfFittestIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

 public Individual[] getFiveIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

4];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

 public double getMaxFitness() {

 return individuals[0].getFitnessValue();

 }

 public double getAverageFitness() {

 double sum = 0;

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 sum += individuals[i].getFitnessValue();

 }

 return sum / POPULATION_SIZE;

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Arrays.sort(population.getAllIndividuals());

 Population halfPopulation = new

Population(population.getHalfFittestIndividuals());

 Population nextGeneration = new

Population(halfPopulation.getAllIndividuals());

 for (int i = 0, j = Population.POPULATION_SIZE / 2; i <

Population.POPULATION_SIZE / 4; ++i, j += 2) {

 Individual[] parents = chooseParents(halfPopulation);

 int cutPoint =

ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH);

 Individual[] descendants = crossover(parents, cutPoint);

 nextGeneration.addIndividual(j, descendants[0]);

 nextGeneration.addIndividual(j + 1, descendants[1]);

 }

 population = nextGeneration;

 Arrays.sort(population.getAllIndividuals());

//

// population = population.getHalfFittestIndividuals();

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
import java.io.*;

import java.util.ArrayList;

import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 List<Double> max = new ArrayList<>();

 List<Double> average = new ArrayList<>();

 double min = 0.0, copyMin = 0.0;

 for (int i = 0; i < 10; ++i) {

 System.out.println("Iteration #" + (i + 1));

 Population newPopulation = geneticAlgorithm.run();

 min = newPopulation.getMaxFitness();

 System.out.println("Min = " + min + ", Average = " +

newPopulation.getAverageFitness());

 for (Individual individuals : newPopulation.getAllIndividuals())

{

 System.out.println(individuals.getX());

 }

 max.add(newPopulation.getMaxFitness());

 average.add(newPopulation.getAverageFitness());

 }

}

