
Task1

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
/**
 * Created by yauheni on 07.09.16.
 */
class Individual implements Comparable<Individual> {
 public static final int GENE_LENGTH = 20;
 private List<Double> genes;
 private double fitnessValue;
 public double getGene(int index) {
 return genes.get(index);
 }
 public void setGene(int index, double gene) {
 genes.set(index, gene);
 }
 public Individual() {
 Random r = new Random();
 genes = new ArrayList<>();
 for (int i = 0; i < GENE_LENGTH; ++i) {
 genes.add(r.nextInt(1000)/ 100.0 - 5);
 }
 fitnessValue = getFitness();
 }
 public double getFitnessValue() {
 return fitnessValue;
 }
 public void setFitnessValue(double fitnessValue) {
 this.fitnessValue = fitnessValue;
 }
 public void generateIndividual() {
 }
 public double getFitness() {
 double temp = 0.0;
 for (int i = 0; i < genes.size(); i++) {
 fitnessValue += genes.get(i) * Math.sin(Math.abs(genes.get(i)));
 }
 return fitnessValue;
 }
 @Override
 public int compareTo(Individual o) {
 return (o.getFitness() < fitnessValue ? 1 : (o.getFitness() == fitnessValue) ? 0 : -1);
 }
}

class Population {
 public static final int POPULATION_SIZE = 20;
 private List<Individual> individuals;

 public Population(List<Individual> individuals) {
 this.individuals = individuals;
 }
 public Population() {
 }
 public static Population newPopulation() {
 Population pop = new Population();
 List<Individual> list = new ArrayList<>();
 for (int i = 0; i < 20; i++) {
 list.add(new Individual());
 }
 pop.setIndividuals(list);
 return pop;
 }
 public List<Individual> getIndividuals() {
 return individuals;
 }
 public void setIndividuals(List<Individual> individuals) {
 this.individuals = individuals;
 }
 public Individual getFittestIndividual() {
 try {
 Collections.sort(individuals);
 }catch(Exception e) {
 }
 return individuals.get(0);
 }
 public double averageFitness() {
 double temp = 0.0;
 for (int i = 0; i < 20; i++) {
 temp += individuals.get(i).getFitness();
 }
 return temp/20;
 }
 public double getMax() {
 return getFittestIndividual().getFitness();
 }
}

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/**
 * Created by yauheni on 07.09.16.
 */
public class Main {
 public static void main(String[] args) throws InterruptedException {
 Population pop = Population.newPopulation();
 List<Double> tempList = new ArrayList<>();
 int count=0;
 while(true) {
 count++;
 if(count == 100)
 break;
 System.out.print(pop.getMax() + " ");
 System.out.println(pop.averageFitness());
 Population newPopulation = new Population();

 List<Individual> newIndividuals = new ArrayList<>();
 List<Individual> individuals = pop.getIndividuals();
 for (int i = 0; i < 10; i++) {
 int first = ThreadLocalRandom.current().nextInt(0, 20);
 int second = ThreadLocalRandom.current().nextInt(0, 20);
 int razrez = ThreadLocalRandom.current().nextInt(0, 20);
 Individual firstInd = individuals.get(first);
 Individual secondInd = individuals.get(second);
 Individual newFirst = new Individual();
 Individual newSecond = new Individual();
 for (int j = 0; j < 20; j++) {
 if(j < razrez) {
 newFirst.setGene(j, firstInd.getGene(j));
 newSecond.setGene(j, secondInd.getGene(j));
 } else {
 newFirst.setGene(j, secondInd.getGene(j));
 newSecond.setGene(j, firstInd.getGene(j));
 }
 }
 newIndividuals.add(newFirst);
 newIndividuals.add(newSecond);
 }
 newPopulation.setIndividuals(newIndividuals);
 pop = newPopulation;
 }
 System.out.println("===========================");
 for (int i = 0; i < tempList.size(); i++) {
 System.out.println(tempList.get(i));
 }
 }
}

red line is average, blue line is fitness.

TASK2

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
/**
 * Created by yauheni on 07.09.16.
 */
class Individual implements Comparable<Individual> {
 public static final int GENE_LENGTH = 10;
 private List<Integer> genes;
 private double fitnessValue;
 public int getGene(int index) {
 return genes.get(index);
 }
 public void setGene(int index, int gene) {
 genes.set(index, gene);
 }
 public Individual() throws InterruptedException {
 Random r = new Random();
 genes = new ArrayList<>();
 for (int i = 0; i < GENE_LENGTH; ++i) {
 //Thread.sleep(50);
 genes.add(r.nextInt(2));
 }
 fitnessValue = getFitness();
 }
 public double getFitnessValue() {
 return fitnessValue;
 }
 public void setFitnessValue(int fitnessValue) {
 this.fitnessValue = fitnessValue;
 }
 public void generateIndividual() {
 }
 public double getX() {
 String t = "";
 for (int i = 1; i < genes.size(); i++) {
 t += genes.get(i);
 }
 if(genes.get(0) == 0) {
 return (double)Integer.parseInt(t, 2)/ 99;
 } else {
 return (double) -Integer.parseInt(t,2)/ 99;
 }
 }
 public double getFitness() {
 return getX() * Math.sin(Math.abs(getX()));
 }
 @Override
 public int compareTo(Individual o) {
 return (o.getFitness() < getFitness() ? 1 : (o.getFitness() == getFitness()) ? 0 : -1);
 }
}

import java.util.ArrayList;

import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/**
 * Created by yauheni on 07.09.16.
 */
public class Main {
 public static void main(String[] args) throws InterruptedException {
 Population pop = Population.newPopulation();
 List<Double> tempList = new ArrayList<>();
 int count=0;
 while(true) {
 count++;
 if(count == 20)
 break;
// System.out.println(pop.getFittestIndividual().getX());
 System.out.print(pop.getFittestIndividual().getFitness() + " ");
 System.out.println(pop.averageFitness());
// for (int i = 0; i < 20; i++) {
// pop.getFittestIndividual();
// System.out.print(pop.getIndividuals().get(i).getX() + " ");
// System.out.println(pop.getIndividuals().get(i).getFitness());
// }
// System.out.println("======================");
 Population newPopulation = new Population();
 List<Individual> newIndividuals = new ArrayList<>();
 List<Individual> individuals = pop.getIndividuals();
 for (int i = 0; i < 10; i++) {
 int first = ThreadLocalRandom.current().nextInt(0, 10);
 int second = ThreadLocalRandom.current().nextInt(0, 10);
 int razrez = ThreadLocalRandom.current().nextInt(0, 10);
 Individual firstInd = individuals.get(first);
 Individual secondInd = individuals.get(second);
 Individual newFirst = new Individual();
 Individual newSecond = new Individual();
 for (int j = 0; j < 10; j++) {
 if(j < razrez) {
 newFirst.setGene(j, firstInd.getGene(j));
 newSecond.setGene(j, secondInd.getGene(j));
 } else {
 newFirst.setGene(j, secondInd.getGene(j));
 newSecond.setGene(j, firstInd.getGene(j));
 }
 }
 newIndividuals.add(newFirst);
 newIndividuals.add(newSecond);
 }
 newPopulation.setIndividuals(newIndividuals);
 pop = newPopulation;
 }
 System.out.println("===========================");
 }
}

