Task1

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
/**
* Created by yauheni on 07.09.16.
*/
class Individual implements Comparable<Individual> {
public static final int GENE_LENGTH = 20;
private List<Double> genes;
private double fithessValue;
public double getGene(int index) {
return genes.get(index);
}
public void setGene(int index, double gene) {
genes.set(index, gene);
}
public Individual() {
Random r = new Random();
genes = new ArrayList<>();
for (inti=0;i < GENE LENGTH; ++i) {
genes.add(r.nextInt(1000)/ 100.0 - 5);
}
fitnessValue = getFitness();
}
public double getFitnessValue() {
return fithessValue;
}
public void setFitnessValue(double fitnessValue) {
this.fitnessValue = fitnessValue;
}
public void generatelndividual() {
}
public double getFitness() {
double temp = 0.0;
for (inti = 0; i < genes.size(); i++) {
fitnessValue += genes.get(i) * Math.sin(Math.abs(genes.get(i)));

}

return fithnessValue;
}
@Override

public int compareTo(Individual o) {
return (o.getFitness() < fitnessValue ? 1 : (o.getFitness() == fitnessValue) ? 0 : -1);

}

class Population {
public static final int POPULATION_SIZE = 20;
private List<Individual> individuals;

public Population(List<Individual> individuals) {
this.individuals = individuals;

}

public Population() {

}

public static Population newPopulation() {
Population pop = new Population();
List<Individual> list = new ArrayList<>();
for (inti=0;i<20;i++) {

list.add(new Individual());

}
pop.setindividuals(list);
return pop;

}

public List<Individual> getindividuals() {
return individuals;

}

public void setindividuals(List<Individual> individuals) {
this.individuals = individuals;

}
public Individual getFittestindividual() {
try {
Collections.sort(individuals);
}catch(Exception e) {
}
return individuals.get(0);
}

public double averageFitness() {
double temp = 0.0;
for (inti=0;i < 20; i++) {
temp += individuals.get(i).getFitness();
}
return temp/20;
}
public double getMax() {
return getFittestindividual().getFitness();

}

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/**
* Created by yauheni on 07.09.16.
*/
public class Main {
public static void main(String[] args) throws InterruptedException {
Population pop = Population.newPopulation();
List<Double> tempList = new ArrayList<>();
int count=0;
while(true) {
count++;
if(count == 100)
break;
System.out.print(pop.getMax() + " ");
System.out.printin(pop.averageFitness());
Population newPopulation = new Population();

List<Individual> newlndividuals = new ArrayList<>();
List<Individual> individuals = pop.getindividuals();
for (inti=0;i<10;i++) {
int first = ThreadLocalRandom.current().nextint(0, 20);
int second = ThreadLocalRandom.current().nextInt(0, 20);
int razrez = ThreadLocalRandom.current().nextint(0, 20);
Individual firstind = individuals.get(first);
Individual secondInd = individuals.get(second);
Individual newFirst = new Individual();
Individual newSecond = new Individual();
for (intj =0;j < 20; j++) {
if(j < razrez) {
newFirst.setGene(j, firstind.getGene(j));
newSecond.setGene(j, secondind.getGene()));
} else {
newFirst.setGene(j, secondind.getGene(j));
newSecond.setGene(j, firstind.getGene(j));
}
}

newlndividuals.add(newFirst);
newlndividuals.add(newSecond);

}

newPopulation.setindividuals(newlIndividuals);

pop = newPopulation;
}
System.out.println("===========================");
for (inti = 0; i < templList.size(); i++) {

System.out.printin(tempList.get(i));

= L}

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
n 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

— CTONORL A d
e CTON G, B

-35

red line is average, blue line is fitness.

TASK2

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import java.util.concurrent.ThreadLocalRandom;
*

* Created by yauheni on 07.09.16.
*/
class Individual implements Comparable<Individual> {

public static final int GENE_LENGTH = 10;

private List<Integer> genes;

private double fithessValue;

public int getGene(int index) {
return genes.get(index);

}

public void setGene(int index, int gene) {
genes.set(index, gene);

}

public Individual() throws InterruptedException {
Random r = new Random();
genes = new ArraylList<>();
for (inti = 0; i < GENE_ LENGTH; ++i) {

/[Thread.sleep(50);
genes.add(r.nextInt(2));

}
fitnessValue = getFitness();

}

public double getFithnessValue() {
return fithessValue;

}

public void setFitnessValue(int fitnessValue) {
this.fitnessValue = fitnessValue;

}
public void generatelndividual() {
}
public double getX() {
Stringt ="";
for (inti = 1; i < genes.size(); i++) {
t += genes.get(i);
}
if(genes.get(0) == 0) {
return (double)integer.parselnt(t, 2)/ 99;
} else {
return (double) -Integer.parseint(t,2)/ 99;
}
}

public double getFitness() {
return getX() * Math.sin(Math.abs(getX()));
}
@Override
public int compareTo(Individual o) {
return (o.getFitness() < getFitness() ? 1 : (o.getFitness() == getFitness()) ? 0 : -1);
}
}

import java.util.ArrayList;

import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
/**
* Created by yauheni on 07.09.16.
*/
public class Main {
public static void main(String[] args) throws InterruptedException {
Population pop = Population.newPopulation();
List<Double> tempList = new ArrayList<>();
int count=0;
while(true) {
count++;
if(count == 20)
break;
/! System.out.printin(pop.getFittestindividual().getX());
System.out.print(pop.getFittestindividual().getFitness() + " ");
System.out.printin(pop.averageFitness());

// for (inti=0;i<20;i++) {

/! pop.getFittestindividual();

/! System.out.print(pop.getindividuals().get(i).getX() + " ");
Vi System.out.printin(pop.getindividuals().get(i).getFitness());
/! }

// SyStem.Out.print|n("======================");

Population newPopulation = new Population();
List<Individual> newlndividuals = new ArrayList<>();
List<Individual> individuals = pop.getindividuals();
for (inti=0;i<10;i++) {
int first = ThreadLocalRandom.current().nextInt(0, 10);
int second = ThreadLocalRandom.current().nextint(0, 10);
int razrez = ThreadLocalRandom.current().nextint(0, 10);
Individual firstind = individuals.get(first);
Individual secondInd = individuals.get(second);
Individual newFirst = new Individual();
Individual newSecond = new Individual();
for (intj=0;j<10; j++) {
if(j < razrez) {
newFirst.setGene(j, firstind.getGene(j));
newSecond.setGene(j, secondind.getGene()));
} else {
newFirst.setGene(j, secondind.getGene(j));
newSecond.setGene(j, firstind.getGene(j));
}
}
newlndividuals.add(newFirst);
newlndividuals.add(newSecond);
}
newPopulation.setindividuals(newlIndividuals);
pop = newPopulation;
}

System_out_println("===========================");

