
TASK1:

public class Main {
 public static Double[][] generation = new Double[20][20];
 public static Double[][] good = new Double[10][20];
 public static Double[][] childes = new Double[10][20];
 public static Integer childCount = 0;
 public static Integer checkCount = 0;
 public static Double prevMax = 0.0;
 public static void main(String[] args) {
 createGenerate();
 while(true) {
 Arrays.sort(generation, new Comparator<Double[]>() {
 @Override
 public int compare(Double[] o1, Double[] o2) {
 Double int1 = fitness(o1);
 Double int2 = fitness(o2);
 return (int)(int1 - int2) * 100;
 }
 });
 Double max = fitness(generation[0]);
 if(prevMax.equals(max))
 checkCount ++;
 else
 checkCount = 0;
 prevMax = max;
 System.out.printf("%.3f %.3f", max,average());
 System.out.println();
 if(checkCount > 30) {
 return;
 }
 setGood();
 Random random = new Random();
 childCount = 0;
 for (int i = 0; i < 5; i++) {
 createChildes(good[random.nextInt(10)], good[random.nextInt(10)]);
 }
 createNewGeneration();
 }
 }
 public static void createGenerate() {
 Random random = new Random();
 for(int i=0;i<20;i++) {
 for (int j = 0; j < 20; j++) {
 generation[i][j] = random.nextInt(1000) / 100.0 - 5;
 }
 }
 }
 public static Double fitness(Double[] obj) {
 Double sum = 0.0;
 for (int i=0; i<obj.length;i++) {
 sum += obj[i] * Math.sin(Math.abs(obj[i]));
 }
 return sum;
 }
 public static void setGood() {
 for(int i =0; i< 10; i++) {
 good[i] = generation[i];
 }
 }

 public static void createChildes(Double[] parent1, Double[] parent2) {
 Random random = new Random();
 Integer delimiter = random.nextInt(20);
 Double[] child1 = new Double[20];
 Double[] child2 = new Double[20];
 for(int i = 0;i<20;i++) {
 if(i<=delimiter)
 child1[i] = parent1[i];
 else
 child1[i] = parent2[i];
 }
 for(int i = 0;i<20;i++) {
 if(i<=delimiter)
 child2[i] = parent2[i];
 else
 child2[i] = parent1[i];
 }
 childes[childCount] = child1;
 childCount++;
 childes[childCount] = child2;
 childCount++;
 }
 public static void createNewGeneration() {
 for (int i=0;i<20;i++) {
 if(i<10)
 generation[i] = good[i];
 else
 generation[i] = childes[i-10];
 }
 }
 public static Double average() {
 Double s = 0.0;
 for (int i=0;i<20;i++) {
 s+= fitness(generation[i]);
 }
 Double average = s / 100.0;
 return average;
 }
}

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Column A

Column B

f

TASK2:

