CIT. Work #2 Alex Hreben Al-10
Task 1.

High-dimensional Test Function

1. Infirst time we generated started population (20 chromosomes with 20 genes)
-8.79 3.82 -2.9 -2.34 -2.7% -8.7 -1.19 4.32 -1.72 4.98 2.15 1.82 @8.11 -8.76 3.86 -4.95 -1.6 1.46 -3.15 1.32
2.80 4,84 2,69 8.9 8,16 -4.85 4.1 -2.5%6 @.82 -3.57 3.58 2.2 @.1& 3.96 -@8.91 -8.49 -@.24 -2.42 2,22 -8.49
-4.6 -4,9 -2.87 -1.93 -8.14 -8.25 -2.95 2.99 3.26 -3.49 -3.483 -3.13 3.41 1.71 -8.84 -8.81 -3.681 -8.688 4.1 1.81
-1.36 -3.9 2 8,86 1.51 4.73 -4.83 8,22 1.35 8,11 -8.88 -4.87 3.81 4.85 3.73 2.49 -3,.35 -3.87 1.59 -2.58
2.32 8,23 3.27 -2.84 -3.66 -4.65 1.4 -4.95 -8.83 B8.55 -4.19 4,46 -2.78 -1.51 -8.75 3.73 -4.58 -8.73 -2.82 -3.65
4,99 -4,72 -8,.63 3.71 -8.32 -4.74 -4,2 2.84 4,55 -1.868 8.37 3.95 -2.34 3.68 #.54 -8.84 -1.2 1.68 -1l.66 -4.,99
-1 8.11 -3.84 -1.89 -2.18 4.62 4,85 -2.7 @.85 4,2 1.74 2,23 1.97 3.5 @.55 -4.16 3.65 -1.28 -3.95 3.74
-4.84 2.74 -1,17 8.49 -4.16 -3.24 #.51 4.53 -1.45 8.93 -1.66 2.61 #.81 @.38 1.93 -1.23 -4.5 2.9 -2.14 1.79
1.9 2.73 -2 -2.39 1.87 ©.21 -8.94 2,2 -3.79 -2.84 1.21 -4.55 -8.72 8,48 -2 -1.11 @.22 2.92 2.43 -3.5
-2.97 -3.,92 2.11 2.95 -3.39 4.3 -8.86 -1.57 -3.36 3.73 -4.87 -2.45 4,35 -3.78 3.88 3.85 2.63 -4.11 3.687 8.24
-3.86 @.82 3,68 -4.2 -4,13 -4.55 3.8 8.26 1.68 4.47 1.29 -4.,72 -3.68 -2.57 -8.1 8,46 -2.58 8.68 3.36 3.89
-4.82 -4.41 -1.39 1.83 -1.18 4.9 2.85% 4.5& -4.17 -1.62 -1.35 -3.33 2.98 -1.5 @.65 1.19 -3.87 -2.5 2.4 B.36
-4.41 -8.41 -3.17 4,97 4.5 8.35 -1.74 4.1 -1.22 4.87 -4,18 -1.98 1.18 -1.@85 -1.32 -1.83 2.98 @.23 8.24 1.25
-1.63 -4.81 -8.91 2.13 3.6 -4.84 2,68 1.15 -1.94 3.88 -4.44 3,51 1.77 2.98 2.17 -2.6 -4,.35 -4.76 3.28 1.65
-1.64 -1.91 -8.55 1.67 3.62 1l.66 -8.32 -2.24 -1.11 4.83 2.36 @ -3.84 1.94 -1.37 1.91 4.87 -4.681 -8.22 2.95
1.83 1.42 -8.89 -8.6 -8.89 -2.47 2,2 2.17 -8.868 -3.18 -3.37 -1.79 -4.81 -1.92 -1.72 @.86 2.97 4,29 -1.96 2.68
-3.83 2.55% 2.64 3.85 2.72 3.17 1.82 8.56 -4.95 -2.51 -4.689 @8.84 2.7 -3.25 2.34 8.9 4,18 2.68 -4.12 -4.95
3.35 -4.44 -2.8 -2.32 -3.99 -1.55 3.41 4.9 -2.77 4.74 1.1 -2.66 1.2 3.87 -2.11 @.57 -1.71 -68.79 @8.99 -6.4
-8.11 -1.9& -2.5%8 -1.76 -8.92 2.98 -4.67 -1.43 8.88 -8.93 3.2 1.87 -2.67 -1.41 -2.85 -3.77 4.89 4 -8.68 -8.79
8.4 8.61 2.11 -4.59 4,858 8.3 -3.34 4.87 8.7 8.85 .45 -3.21 -3.41 4,21 -2.36 -8.43 -8.86 -3.24 -1.46 -8.78

All genes (-5;5)

2. Then we calculate fitness function and sort our population.
Our fitness function:
y=x1sin([x1[)+x2sin([x2])+---+x20sin(/ x20/)
3. Ten chromosomes with smallest fithess we cross with help one-point crossover.
4. Repeat 2-3 while fitness no change.

Code:

import java.util.Arrays;
import java.util.Random;
import java.math.*;

public class siitT {
public static int chromosoms = 20;
public static int genes = 20;
public static float tmp = 0.0f;
public static float[][] population = new float[chromosoms] [genes];
public static float[] resultY = new float[chromosoms];
public static float sum = 0f;
public static float IastY = 0;
public static float[] best = new float[genes];
public static float []xz = new float[chromosoms];

public static void cross(float[] a, float[] b, int n) {
float[] arrl = new float[a.length];

float[] arr2 = new float([b.length

float[] endl = new float|a

float[] end2 new float[b

1
.length];
.length];

’

for (int i = n; i < a.length; i++) {

endl[i] = ali]l;
end2[1i] = b[i];
}

for (int i = 0; i < a.length; i++) {

arrl[i] = al[i];

arr2[i] = b[i];

if(i>n) {
arrl[i] = endl[1];
arr2[i] = end2[1i];

}

public static void generatePop () {
Random rnd = new Random() ;
for (int i 0; i1 < chromosoms; i++) {
for (int j = 0; j < genes; j++) {
population[i][j] = rnd.nextInt (1000)/100f - 5;

}
}

public static void main(String[] args) {

generatePop () ;

for (int i = 0; i < chromosoms; i++) {
for (int j = 0; j < genes; j++) {
System.out.print (population[i]l [j] + " ");
}
System.out.println () ;

}

for (int i = 0; i < population.length; i++) {
for (int j = 0; j < genes; j++) {
float a = (float) (population[i][j]*Math.sin(
Math.abs(population[i][j1))):
sum =+ a;
}
resultY[i] = (float) sum;

}

for (int i = 0; i < resultY.length; i++) {
xz[1] = resultY[i];

}

Arrays.sort(xz);

lastY = xz[9];

for (int i = 0; i < resultY.length; i++) {
if (resultY[i] <= lastY) {
best[i] = resultY[i];
}
}

System_out_prj_ntln (MHEFEE KKK KA KKK
for (int i = 0; i < resultY.length; i++) {
System.out.print (resultY[i] + "™ ");

}
System.out.println();

for (int i = 0; i < best.length; i++) {
System.out.print (best[i] + " ");

}

Minimum/iteration

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Picture 1. Minimum value of fitness function by iteration.

Average/iteration

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Picture 2. Average value of fitness function by iteration.

Task 2.

2-D version of Schwefel’s function

Exercise 6 1. Minimize

y=xsin([x[)

in the following way!

(1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change.

2. Show

(1) the graph of fitness vs generation.

(2) all 20 points (x, y) in the 1st, an intermediate, and final generation.

1. Generate start population (20 chromosomes with 10 binary genes).
2. Calculate fitness with.

Our population with fitness:

Chromosomes | Fitness

1001010011
1111101100
1100000001
0101111011
00o00l11010
1111100111
0100010100
1100110000
1001000111
1111001110
0101000000
0011000001
1011111101
1111100101
1011100011
0011001101
0000000001
0001011100
1100001011
0100010001

WUuIhARPRUUONOOWNNUTD, WO WN W WUV

3. Then we write our result in (-5;5)

0.23097293042006534
-2.7713049103236975
4.735867173522031
2.012991264589042
1.4063699329594572
-0.05279364293534352
0.9838294872267892
-4.534921774217892
-2.3633582159065183
-3.5639294200686673

0.1890317564253989
-1.627000119664935
-0.5296445079106711
-3.8625831556710133
-0.29653330076398865
-0.6795759385619088
0.27795814161988114
0.10297741660542299
-0.0664506837444192
1.249746150523185

4. Ten chromosomes with smallest fitness we cross with help one-point crossover.
5. Repeat 3-4 while fitness don’t change.

Code:
package siitTT;

import java.util.Arrays;
import java.util.Random;

public class siitTT {

public static int chromososm = 20;

public static int genes = 10;

public static int[][] population = new int[chromososm] [genes];
public static double numb = 0d;

public static double tmp = 0d;

public static int generation = 0;

public static int[] fit = new int[population.length];

public static double converte(int[] k) {
double numbl = 0;
for (int 1 = 9; 1 >= 0; i--) {
double tmpl = k[i] * Math.pow(2, 1);
numbl = numbl + tmpl;
}
return numbl/1023*5;

}

public static double from2TolO (int[] k) {
for (int i = 9; i >= 0; i--) {
tmp = k[i] * Math.pow(2, 1i);
numb = numb + tmp;

}

numb = numb * Math.sin(Math.abs (numb))/1023*5;
if(k[0] == 0)

return - (numb) ;
else {

return numb;

}

public static int fitness(int[] a) {
int £ = 0;
for (int i = 0; i < a.length; i++) {
f=f+ alil;
}

return f;

}

public static void cross(int[] a, int[] b,int n){

int[] arrl = new int[a.length];
int[] arr2 = new int[b.length];
int[] endl = new int[a.length];
int[] end2 = new int[b.length];

for (int 1 = n; 1 < a.length; i++) {
endl[1] = al[i];
end2[1i] = b[i];
}
for (int i = 0; i < a.length; i++) {
arrl[i] ali]l;
arr2[i] = b[i];
if (i>n) {
arrl[i] = endl[i];
arr2[i] = end2[1];

}

public static void generatePop () {
Random rnd = new Random() ;

for (int 1 = 0; 1 < chromososm; 1i++) {
for (int j = 0; j < genes; j++) {
population[i] [j] = rnd.nextInt (2);
}

}
public static void main(String[] args) {

generatePop () ;

for (int 1 = 0; 1 < chromososm; i++) {
for (int j = 0; j < genes; j++) {
System.out.print (population[i] [j] + "™ "),

}
System.out.println(" ");

}

for (int i = 0; i < population.length; i++) {

System.out.print (fitness(population[i]) + "™ ");
System.out.println(/*converte (population[i]) +*/ " " +
from2Tol0 (population[i]) + " ");

}
for (int i = 0; i < population.length; i++) {
for (int j = 0; J < population.length/2; j++) {
System.out.print (population[i] [J]);
}

fit[i] = fitness(population[i]);

System.out.println (" " + fitness(population[i]));
}
System.out.println (" ")

Arrays.sort(fit);
int g = fit[9];
int[] minB = new int[20];
for (int i = 0; i < fit.length; i++) {
if(g > fit[i])
minB[i] = 1i;
else
minB[i] = 0;
}
for (int i = 0; i < population.length; i++) {
if (fitness(population[i]) >= minB[i]) {

}
}
for (int i = 0; i < population.length; i++) {
for (int j = 0; J < population.length/2; j++) {
System.out.print (population[i] [j]);
}
System.out.println();
P}

Minimum/iteration.

123456 7 8 910111213141516171819202122232425

Picture 1. Minimum value of fitness function by iteration.

Average/iteration.

123456 7 8 910111213141516171819202122232425

Picture 2. Average value of fitness function by iteration.

45
40
35
30
25
20
15
10
05

0

Y x

05
-10
-15
20
25
-3.0
-35
-40
45

5.0

50 45 40 -35 -30 25 20 -15 -10 -05 0 05 10 15 20 25 30 35 40 45 50

Picture 3. lteration #5

45
40
35
30
25
20
15
10

05

AY

Y <

-10

-15

-20

-3.0
-35
-40
45

50
50 45 40

-35 -30 -25 -20 -15 -10 05 0 05 10 15 20 25 30 35 40 45 50

Picture 4. Iteration #11

45

40

35

30

25

20

15

10

05

0

05

-10

-15

-20

25

-3.0

35

-40

45

5.0

50 45 40 -35 30 -25 -20 -15 -10 05 0 05 10 15 20 25 30 35 40 45 50

y <

Picture 5. All dots in minimum (13 iteration)

