Task 1.
20-Dimensional Schwefel’s function.

y = x1 sin(|x1[) + x2 sin(|x2[) +*-+ x20 sin(|x20)]);
In this task, we must represent each xi by a chromosome with 20 genes.

1. I randomly generated a population of 20 parents from 20 genes in the range of -5 to 5.

population.bd & X SIID_2 taskl.cpp
L 28 -2.54 -1.6 -1.73 0.3

1 »8.67 -2.51 »l.o9
.84 -4.82 -1.41 -4.47 -2
3 -0.48 1.32 -1.62 2.77 -1.94 4.14 -0.38
3.84 - -2.82 -0.73 -4.32 0.04 -4.85
. . . - - -0.83 4.99 -1.87 -3.68 -4.56 0.74
323653941 17=2.01~1.99 9 1. . -2.84
.24 -4 -4.37 4.4 7 1.83 ot S e 1. . 1.27 4.
87 -3.32 1.42 .37 3
92 -2.89 4.86 1.66 -2.54 -2.06 -2
4.82 -3.25 -2.98 -0.72 -4.56 -1.59 3
-1.54 1.85 0.69 4.57 -2.09

2
0. : - .09 .73 4.3
81 -1.14 -0.22 @.8 < .
2.51 -2.19 4.67 -0O. 71 -2.97 -@. 91
-2.16 -1.63 3.14 -1. v . 4.11 -4.73 4 -0.3 1.58 -4.
.18 4.34 1.5 -1.53 3.22 4.¢ . . 4.1 -0.85 1.14 0.18 4.03 0.07 -2.32 0.16
1.3] 1 3.56 0.4 -2.07 3. 2. s o 3253 g 7 -4.96
-2.35 -0.17 1.07 .21 -1. . .7 1.3 0. .46 .83 . 1.33 2.06 -2.04

sort.bt B X SIID_2 taskl.cpp
b.B? 4.62 -0.88 -1.54 1.85 0.69 4.57 -2.09 2. .42 - .97 3.68 4.34 -1.43
-2.34 -4.35 -2.63 -1.99 -2.18 4.34 1.5 -1.5 . a -3.89 4.1 -0.85 1.
lo -2.47 -1.35 ©.15 0.384 4.78 0.26 - 1 1.6: 5 .51 -2.19 4.67
.8 3.43
1.28 4.13
44 0.72 4.25 -2.79 -1.84 -4.82 -1.41 -4.47 <
91 0. 65 4.04 3.71 4.6 1.3 -0.48 1 -1.62 2.77 -1.94 4.14 -0.38
07 -4.4 4.97 -4.29 0.11 1.1 -4.23 3.79 -1.92 -1.04 -2.09
14 -1 -4.78 89 2.73 4.11 -4.73 4 -0.3 1.58 -4.13 3.55 -0.47
97 2.15 »0 62 -0.17 1.87 ©0.21 -1.56 3.3 -0.7 1.03 0.63 -1.46 -4.83 -0.02 -1.33 2.06 -2.04
3 2 -0.87 90.62 -1.21 -0.67 -2.51 -1.89 -1.67 3.4 1.38 0.3
@.86:-2.79 -1.6 -1.53 4.99 -1.87 -3.68 -4.56 ©.74

-2.41 2.14 2.19 3.84 -1.3 . -0.73 -4.32 0.04 -4.85
82

=114 <0229 i] .43 ©.58 0.51 -2.86
.36 3.94 -1.17 -2.01 -1.99 2.48 -2. - 2. 2.48 1. 6.64 -2.04 -4.7 2. .41 1. .37 -3.01
-1.46 0.84 3.09 -1.31 61 3.56 0.04 . 3.17 1.32 1. 3.37 . 3.1 . 3 -4.96
.9 1.54 -3.85 1.35 -2.49 3.86 1.46 -3.89 -4. .8 &3 3.03 -4, P b o 8 4.1
3.14 -0.24 -4 -4.37 4.4 -3 -1.83 -0.89 0.47 -4.58 3.42 1.9 -3.47 1.27 4.86 -3.53 3.11 -3.18 @.53 -0.77
©.66 -2.29 2.67 -0.12 1.58 2.41 ©.54 -4.95 0.16 ©.43 -4.12 4.09 -4.73 4.34 4.38 -4.3 -3.91 -3.44 -0.58 2.6
-3.76 2.8 1.82 4.02 -3.25 -2.98 -0.72 -4.56 -1.59 3.81 -1.16 -4.85 -3.25 -4.5 -4.03 -4.03 -3 9.12 -4.74 1.54

3. Ten smaller parents from the population by crossing and get 10 children.
4. We get a new population with the selected 10 smaller parents and 10 children.
5. We execute this algorithm twenty iterations.

Source code:

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();

void getPopulation();

int ChromosomeSumm(const Individual& population);

bool ChromosomeSort(const Individual& populationl, const Individual& population2);

void print();

void crossing();

Population population;

int main()

{

srand(time(NULL));

makePopulation(); //Create a population of 20 chromosomes at random;
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);//sort using a fitness

function y;

print();

ofstream file("DataForGraph.txt", ios::out);

file << "M | Min y | Average y";
file << '\n';

for (int i = @; 1 < 20; i++)

{

crossing();//get a new population;

sort(population.begin(), population.end(), ChromosomeSort); //sort using a

fitness function y;

double Min = 9;
double Average = 0;

for (int k = @; k < population[@].size(); k++) {
Min += population[@][k] * sin(abs(population[@][k]));
}

for (int j = ©; j < population.size(); j++) {
for (int k = @; k < population[j].size(); k++) {
Average += population[j][k] * sin(abs(population[j][k]));
}

}

Average = Average / 20;

file << i +1 << " | " << Min <<
file << '\n';

<< Average;

file.close();

system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; i < 20; i++) {
for (int j = 0; j < 20; j++) {
file << ((rand() % 1000) - 500)/100.0;
if (j == 20 - 1) file << '\n';

else file <« 5

}
)

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; i < 20; i++) {
Individual row;
for (int j = 0; j < 20; j++) {
double value;
file >> value;
row.push_back(value);

}

population.push_back(row);

}

file.close();

}

int ChromosomeSumm(const Individual& population) {
double summ = 0;
for (int i = @; i < population.size(); i++) {
summ += population[i] * sin(abs(population[i]));
}

return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) < ChromosomeSumm(population2);
}

void print(){
ofstream file("sort.txt", ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = @; j < population[i].size(); j++) {
file << population[i][j];
if (j == 20 - 1) file << '\n';

else file << ;

}
}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; 1 < 10; i++){
CrossingPoint = rand() % 20;

FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){
while (FirstParent != SecondParent)

{
¥

SecondParent = rand() % 10;

}

Individual Childl, Child2;

for (int j = @; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
¥
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
}
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;
}
Data for graph:

DataForGraph.txt ® X SIID_2_taskl.cpp
Ie y | Average y
1 .8611 | -9.78998
.6274 | -16.5172
.6274 | -19.8377
.5058 | -22.1754
.0928 | .1521
.0928 | .4315

|

|

I

Vi wn
w oW
O
| |}
w N
(SN

.8928 .26038

.0928 .8573

.0928 .9928

.0928 .0928
.8928 .0928
.8928 .0928
.8928 .0928
.8928 .0928
.8928 .0928
.0928 .0928
.0928 .0928
.8928 .0928
.0928 .0928
.09238 .0928

|
w
(%)}

|
w
(e}

W o0~ >
w
(o]

w
O
|
w
O

0
1
L
O

0
1
W
O

0
1
W
O

0
1
W
O

0
1
W
O

0
1
w
O

1
w
O

0
w
O

0
w
O

0
w
O

2
)
2
)
2
)
2
2
2
2
2
-39
2
<
2
<
2
<
2
2
2
<

0
w
O

Graph 1. Minimum value of fitness function y by iteration.

Minimum value of fitness function y
by iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-10
-15
-20
-25
-30

-40

-45

In x line we have current iteration, in y line — minimum value of function.

Graph 2. Average value of fitness function y by iteration.

Average value of fitness functiony
by iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-10
-15
-20
-25
-30
-35

-40
-45

In x line we have current iteration, in y line — average value of function.

Task 2.
2-D version of Schwefel’s function.
y = xsin(|x[);
In this task, we must represent value of x by a 10-bit binary chromosome.

1. 1 randomly generated a population of 20 parents from 11 genes consisting of 0 and 1.

populationtst ® X SIID_2 task2.cpp
b o1 1111

[y
[\~

[T S S SUR -~ T T S S~ S S~ B S S =R S B
(OB ST~ T SR~ T SR <~ S S~ S~ B T~ B~ T~ T S o~ I~

[S S~ T Y I SR+ P S N B SR I S S S S I
o T I S~ T I S S S~ T S S S B~ B I~ I~ B~ B

R T~ T S S~ T~ T S~ O SR SR S~ T S~ T S S S T I
(B~ B~ TR~ T T~ T~ TR~ I S~ TR~ T~ S~ T~ T S S S S~
D RO RO RO
[T < T~ S~ S S~ T I~ T I~ T~ T I S S S
[S S T S~ B Y I S~ I S~ B S S S v I]

1
@
1
1
@
1
1
@
1
1
1
1
1
@
@
1
@
1

2. Sort population using the fitness function y:
the first bit determines the sign of the number(if 1 is a plus, else 0). Remaining ten bits
which number is represented in binary form, which we translate into decimal form and
divide by 1023. Since our range is from -5 to 5, we multiply our number on 5. Then we
sort each parent with respect to the numbers obtained, the less the better.

3. We get a new population with the selected 10 smaller parents and 10 children.

4. We execute this algorithm twenty five iterations.

Source code:

#include "stdafx.h"
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();

void getPopulation();

int ChromosomeSumm(const Individual& population);

bool ChromosomeSort(const Individual& populationl, const Individual& population2);
void print();

void crossing();

double x, y;

Population population;
int main()

{ srand(time(NULL));

makePopulation();
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);
ofstream file("DataForGraph.txt", ios::out);

file << "X | Y";
file << '\n';

for (int i = @0; 1 < 25; i++)

{

file << "Iteration N " << i + 1;
file << "\n';

crossing();
sort(population.begin(), population.end(), ChromosomeSort);

for (int j = @; j < population.size(); j++) {
double summ = 0;

summ = population[j][1] * 1 + population[j][2] * 2 + population[j][3]

* 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] * 32 +
population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][1@] * 512;
if (population[j][@] == 0){
summ = summ * -1;

¥

summ = summ / 1023 * 5;

X = summ;

summ = summ * sin(abs(summ));
y = summ;

file << x << " | " << y;

file << '\n';
}
double Min = 9;
double Average = 0;

double AverageSumm = 0;

for (int j = @; j < population.size(); j++) {

Min = population[@][1] * 1 + population[@][2] * 2 + population[@][3]

* 4 + population[@][4] * 8 + population[@][5] * 16 + population[@][6] * 32 +
population[@][7] * 64 + population[@][8] * 128 + population[@][9] * 256 +
population[@][10] * 512;
if (population[@][@] == 0){
Min = Min * -1;

}
Min = Min / 1023 * 5;
Min = Min * sin(abs(Min));

}

for (int j = ©; j < population.size(); j++) {
for (int k = @; k < population[j].size(); k++) {

Average = population[j][1] * 1 + population[j][2] * 2 +
population[j][3] * 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] *

32 + population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][10] * 512;

if (population[j][@] == ©){

Average = Average * -1;

}

Average = Average / 1023 * 5;

Average = Average * sin(abs(Average));

}

AverageSumm += Average;

}

AverageSumm = AverageSumm / 20;

file << Minimum: << Min <«

file << '\n’;

Average: << AverageSumm;

}

file.close();

print();
system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; 1 < 20; i++) {
for (int j = 0; j < 11; j++) {
file << rand() % 2;
if (j == 11 - 1) file << '\n';

else file << ;

}
}

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; 1 < 20; i++) {
Individual row;
for (int j = 0; j < 11; j++) {
double value;
file >> value;
row.push_back(value);
}
population.push_back(row);
b

file.close();

}

int ChromosomeSumm(const Individual& population) {

double summ = 0;

summ = population[1] * 1 + population[2] * 2 + population[3] * 4 + population[4] *
8 + population[5] * 16 + population[6] * 32 + population[7] * 64 + population[8] * 128 +
population[9] * 256 + population[1@0] * 512;

if (population[@] == 0){

summ = summ * -1;
}

summ = summ / 1023 * 5;
summ = summ * sin(abs(summ));
return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) < ChromosomeSumm(population2);

}

void print(){
ofstream file("sort.txt", 1ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = 0; j < population[i].size(); j++) {
file << population[i][j];
if (j == 11 - 1) file << '\n';

else file <« 5

}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; i < 10; i++){
CrossingPoint = rand() % 11;
FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){
while (FirstParent != SecondParent)

{
¥

SecondParent = rand() % 10;

}

Individual Childl, Child2;

for (int j = ©; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
}
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
}
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;

Data for graph:

DataForGraphXY.t¢ & X SIID_2_task2.cpp*
Min | Average

.76229 | -0.138569
. 76229 -2.0601

. 76229 -2.80361
. 76229 =3 1275

. 76229 .6165

. 76229 .76229
.76229 .76229
. 76229 . 76229
. 76229 .76229
.76229 .76229
.76229 .76229
.76229 .76229

.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229

i ~ekele]

.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229
.76229

75220

|
|
|
|
|
|
|
|
|
|
|
.76229 | -4.76229
|
|
|
|
|
|
|
|
|
}
|

Graph 1. Average value of fitness function y by iteration.

Average value of fitness function y by iteration.

2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25

-6

In x line we have current iteration, in y line — average value of function.

Graph 2. Minimum value of fitness function y by iteration.

Minimum value of fitness function y by iteration.

1 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22 23 24 25

-6

In x line we have current iteration, in y line — minimum value of function.
Graph 3. Dots on diagram on 1 iteration.

DataForGraph.dt #® X SIID_2 task2.cpp
K|y
Iteration
4.77028 |

.94917 | -2.

.94917 | -2.

|
l

wow

w

.94917 =A%
.51966 =1

N 000

w

O
~J
>
N

-2.50244 | -1.49274
3.51986 | -1.29702
3.51986 | -1.29702
-2.50244 | -1.49274

w

.51986 | -1.29702
.51986 | -1.29702
.7957 | ©.947847
.31867 | -0.584597
.52199 | 1.46454
.18475 | 1.78576
.38025 | 1.64212
-3.75367 | 2.15673
-4.02737 | 3.11883
-4.87781 | 4.81122
| 4

w

w N

-4.68231 .680819
Minimum: -4.76229 Average: -0.138569

45

40

35

3.0

25

20

15

10

05

AY

Yy X

50 -45 40

-35

30 -25

20 -15

-10 05

0 05 10 15 20 25 30 35 40 45 50

Graph 4. Dots on diagram on 4 iteration.

DataForGraph.bd = X SIID_2 task2.cpp
Iteration N 4

. 77028 . 76229
.57478 | .53153
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.80938 | -4.78678
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.14467 | -3.4945
.94917 | -2.85372

|

|

|

|

|

|

|

|

I

4
4
4
4
4
4
4
4
4
4

w

.94917 2.85372
.94917 2.85372
.94917 2.85372
.94917 2.85372
.94917 2.85372
.91007 2.71765
.94917 2.85372
.94917 2.85372
.94917 2.85372
Minimum: -4.76229 Average: -3.7275

W oW oW owowww

w

45

40

35

3.0

25

20

15

10

05

AY

Yy <

50 -45 40

-35

30 -25

20 -15

-10 05

0 05 10 15 20 25 30 35 40 45 50

Graph 4. Dots on diagram on 10 iteration.

DataForGraph.td & X SIID_2 task2.cpp
Iteration N 10

. 770238 .76229

.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | -4.76229
.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

.77028 | .76229

Minimum: .76229 Average: -4.76229

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

45

40

35

30

25

20

15

10

05

AY

Y x

50 -45 40

-35

30 -25

20 -15

-10 05

0 05 10 15 20 25 30 35 40 45 50

