
Task 1.

20-Dimensional Schwefel’s function.

y = x1 sin(|x1|) + x2 sin(|x2|) +···+ x20 sin(|x20|);

In this task, we must represent each xi by a chromosome with 20 genes.

1. I randomly generated a population of 20 parents from 20 genes in the range of -5 to 5.

2. Sort population using the fitness function y.

3. Ten smaller parents from the population by crossing and get 10 children.

4. We get a new population with the selected 10 smaller parents and 10 children.

5. We execute this algorithm twenty iterations.

Source code:

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();
void getPopulation();
int ChromosomeSumm(const Individual& population);
bool ChromosomeSort(const Individual& population1, const Individual& population2);
void print();
void crossing();

Population population;

int main()
{
 srand(time(NULL));

 makePopulation(); //Create a population of 20 chromosomes at random;
 getPopulation();

 sort(population.begin(), population.end(), ChromosomeSort);//sort using a fitness
function y;

 print();

 ofstream file("DataForGraph.txt", ios::out);

 file << "№ | Min y | Average y";
 file << '\n';

 for (int i = 0; i < 20; i++)
 {
 crossing();//get a new population;

 sort(population.begin(), population.end(), ChromosomeSort); //sort using a
fitness function y;

 double Min = 0;
 double Average = 0;

 for (int k = 0; k < population[0].size(); k++) {
 Min += population[0][k] * sin(abs(population[0][k]));
 }

 for (int j = 0; j < population.size(); j++) {
 for (int k = 0; k < population[j].size(); k++) {
 Average += population[j][k] * sin(abs(population[j][k]));
 }
 }
 Average = Average / 20;

 file << i + 1 << " | " << Min << " | " << Average;
 file << '\n';
 }

 file.close();

 system("Pause");
 return 0;
}

void makePopulation() {
 ofstream file("population.txt", ios::out);
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 20; j++) {
 file << ((rand() % 1000) - 500)/100.0;
 if (j == 20 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void getPopulation() {
 ifstream file("population.txt");
 for (int i = 0; i < 20; i++) {
 Individual row;
 for (int j = 0; j < 20; j++) {
 double value;
 file >> value;
 row.push_back(value);
 }
 population.push_back(row);
 }
 file.close();
}

int ChromosomeSumm(const Individual& population) {
 double summ = 0;
 for (int i = 0; i < population.size(); i++) {
 summ += population[i] * sin(abs(population[i]));
 }
 return summ;
}

bool ChromosomeSort(const Individual& population1, const Individual& population2) {
 return ChromosomeSumm(population1) < ChromosomeSumm(population2);
}

void print(){
 ofstream file("sort.txt", ios::out);
 for (int i = 0; i < population.size(); i++) {
 int tmp = 0;
 for (int j = 0; j < population[i].size(); j++) {
 file << population[i][j];
 if (j == 20 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void crossing() {
 int CrossingPoint;
 int FirstParent, SecondParent;
 Population resultPopulation;

 for (int i = 0; i < 10; i++){
 CrossingPoint = rand() % 20;

 FirstParent = rand() % 10;
 SecondParent = rand() % 10;
 if (FirstParent == SecondParent){
 while (FirstParent != SecondParent)
 {
 SecondParent = rand() % 10;
 }
 }

 Individual Child1, Child2;

 for (int j = 0; j < population[i].size(); j++)
 {
 if (j < CrossingPoint)
 {
 Child1.push_back(population[FirstParent][j]);
 Child2.push_back(population[SecondParent][j]);
 }
 else
 {
 Child1.push_back(population[SecondParent][j]);
 Child2.push_back(population[FirstParent][j]);
 }
 }
 resultPopulation.push_back(Child1);
 resultPopulation.push_back(Child2);
 }
 population = resultPopulation;
}

Data for graph:

Graph 1. Minimum value of fitness function y by iteration.

In x line we have current iteration, in y line – minimum value of function.

Graph 2. Average value of fitness function y by iteration.

In x line we have current iteration, in y line – average value of function.

Task 2.

2-D version of Schwefel’s function.

y = xsin(|x|);

In this task, we must represent value of x by a 10-bit binary chromosome.

1. I randomly generated a population of 20 parents from 11 genes consisting of 0 and 1.

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Minimum value of fitness function y
by iteration

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average value of fitness function y
by iteration

2. Sort population using the fitness function y:

the first bit determines the sign of the number(if 1 is a plus, else 0). Remaining ten bits

which number is represented in binary form, which we translate into decimal form and

divide by 1023. Since our range is from -5 to 5, we multiply our number on 5. Then we

sort each parent with respect to the numbers obtained, the less the better.

3. We get a new population with the selected 10 smaller parents and 10 children.

4. We execute this algorithm twenty five iterations.

Source code:

#include "stdafx.h"
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();
void getPopulation();
int ChromosomeSumm(const Individual& population);
bool ChromosomeSort(const Individual& population1, const Individual& population2);
void print();
void crossing();

double x, y;

Population population;

int main()
{
 srand(time(NULL));

 makePopulation();
 getPopulation();

 sort(population.begin(), population.end(), ChromosomeSort);

 ofstream file("DataForGraph.txt", ios::out);

 file << "X | Y";
 file << '\n';

 for (int i = 0; i < 25; i++)
 {

 file << "Iteration N " << i + 1;
 file << '\n';

 crossing();

 sort(population.begin(), population.end(), ChromosomeSort);

 for (int j = 0; j < population.size(); j++) {
 double summ = 0;
 summ = population[j][1] * 1 + population[j][2] * 2 + population[j][3]
* 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] * 32 +
population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][10] * 512;
 if (population[j][0] == 0){
 summ = summ * -1;
 }
 summ = summ / 1023 * 5;
 x = summ;
 summ = summ * sin(abs(summ));
 y = summ;
 file << x << " | " << y;
 file << '\n';
 }

 double Min = 0;
 double Average = 0;
 double AverageSumm = 0;

 for (int j = 0; j < population.size(); j++) {
 Min = population[0][1] * 1 + population[0][2] * 2 + population[0][3]
* 4 + population[0][4] * 8 + population[0][5] * 16 + population[0][6] * 32 +
population[0][7] * 64 + population[0][8] * 128 + population[0][9] * 256 +
population[0][10] * 512;
 if (population[0][0] == 0){
 Min = Min * -1;
 }
 Min = Min / 1023 * 5;
 Min = Min * sin(abs(Min));
 }

 for (int j = 0; j < population.size(); j++) {
 for (int k = 0; k < population[j].size(); k++) {
 Average = population[j][1] * 1 + population[j][2] * 2 +
population[j][3] * 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] *

32 + population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][10] * 512;
 if (population[j][0] == 0){
 Average = Average * -1;
 }
 Average = Average / 1023 * 5;
 Average = Average * sin(abs(Average));
 }
 AverageSumm += Average;
 }
 AverageSumm = AverageSumm / 20;

 file << " Minimum: " << Min << " Average: " << AverageSumm;
 file << '\n';
 }

 file.close();

 print();
 system("Pause");
 return 0;
}

void makePopulation() {
 ofstream file("population.txt", ios::out);
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 11; j++) {
 file << rand() % 2;
 if (j == 11 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void getPopulation() {
 ifstream file("population.txt");
 for (int i = 0; i < 20; i++) {
 Individual row;
 for (int j = 0; j < 11; j++) {
 double value;
 file >> value;
 row.push_back(value);
 }
 population.push_back(row);
 }
 file.close();
}

int ChromosomeSumm(const Individual& population) {
 double summ = 0;
 summ = population[1] * 1 + population[2] * 2 + population[3] * 4 + population[4] *
8 + population[5] * 16 + population[6] * 32 + population[7] * 64 + population[8] * 128 +
population[9] * 256 + population[10] * 512;
 if (population[0] == 0){
 summ = summ * -1;
 }
 summ = summ / 1023 * 5;
 summ = summ * sin(abs(summ));
 return summ;
}

bool ChromosomeSort(const Individual& population1, const Individual& population2) {
 return ChromosomeSumm(population1) < ChromosomeSumm(population2);
}

void print(){
 ofstream file("sort.txt", ios::out);
 for (int i = 0; i < population.size(); i++) {
 int tmp = 0;
 for (int j = 0; j < population[i].size(); j++) {
 file << population[i][j];
 if (j == 11 - 1) file << '\n';
 else file << ' ';
 }
 }
 file.close();
}

void crossing() {
 int CrossingPoint;
 int FirstParent, SecondParent;
 Population resultPopulation;

 for (int i = 0; i < 10; i++){
 CrossingPoint = rand() % 11;
 FirstParent = rand() % 10;
 SecondParent = rand() % 10;
 if (FirstParent == SecondParent){
 while (FirstParent != SecondParent)
 {
 SecondParent = rand() % 10;
 }
 }

 Individual Child1, Child2;

 for (int j = 0; j < population[i].size(); j++)
 {
 if (j < CrossingPoint)
 {
 Child1.push_back(population[FirstParent][j]);
 Child2.push_back(population[SecondParent][j]);
 }
 else
 {
 Child1.push_back(population[SecondParent][j]);
 Child2.push_back(population[FirstParent][j]);
 }
 }
 resultPopulation.push_back(Child1);
 resultPopulation.push_back(Child2);
 }
 population = resultPopulation;
}

Data for graph:

Graph 1. Average value of fitness function y by iteration.

In x line we have current iteration, in y line – average value of function.

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Average value of fitness function y by iteration.

Graph 2. Minimum value of fitness function y by iteration.

In x line we have current iteration, in y line – minimum value of function.

Graph 3. Dots on diagram on 1 iteration.

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Minimum value of fitness function y by iteration.

Graph 4. Dots on diagram on 4 iteration.

Graph 4. Dots on diagram on 10 iteration.

