Task 1.
20-Dimensional Schwefel’s function.

y = x1 sin(|x1[) + x2 sin(|x2[) +*-+ x20 sin(|x20)]);
In this task, we must represent each xi by a chromosome with 20 genes.

1. I randomly generated a population of 20 parents from 20 genes in the range of -5 to 5.
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3. Ten smaller parents from the population by crossing and get 10 children.
4. We get a new population with the selected 10 smaller parents and 10 children.
5. We execute this algorithm twenty iterations.



Source code:

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();

void getPopulation();

int ChromosomeSumm(const Individual& population);

bool ChromosomeSort(const Individual& populationl, const Individual& population2);

void print();

void crossing();

Population population;

int main()

{

srand(time(NULL));

makePopulation(); //Create a population of 20 chromosomes at random;
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);//sort using a fitness

function y;

print();

ofstream file("DataForGraph.txt", ios::out);

file << "M | Min y | Average y";
file << '\n';

for (int i = @; 1 < 20; i++)

{

crossing();//get a new population;

sort(population.begin(), population.end(), ChromosomeSort); //sort using a

fitness function y;

double Min = 9;
double Average = 0;

for (int k = @; k < population[@].size(); k++) {
Min += population[@][k] * sin(abs(population[@][k]));
}

for (int j = ©; j < population.size(); j++) {
for (int k = @; k < population[j].size(); k++) {
Average += population[j][k] * sin(abs(population[j][k]));
}

}

Average = Average / 20;

file << i +1 << " | " << Min <<
file << '\n';

<< Average;



file.close();

system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; i < 20; i++) {
for (int j = 0; j < 20; j++) {
file << ((rand() % 1000) - 500)/100.0;
if (j == 20 - 1) file << '\n';

else file <« 5

}
)

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; i < 20; i++) {
Individual row;
for (int j = 0; j < 20; j++) {
double value;
file >> value;
row.push_back(value);

}

population.push_back(row);

}

file.close();

}

int ChromosomeSumm(const Individual& population) {
double summ = 0;
for (int i = @; i < population.size(); i++) {
summ += population[i] * sin(abs(population[i]));
}

return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) < ChromosomeSumm(population2);
}

void print(){
ofstream file("sort.txt", ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = @; j < population[i].size(); j++) {
file << population[i][j];
if (j == 20 - 1) file << '\n';

else file << ;

}
}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; 1 < 10; i++){
CrossingPoint = rand() % 20;



FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){
while (FirstParent != SecondParent)

{
¥

SecondParent = rand() % 10;

}

Individual Childl, Child2;

for (int j = @; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
¥
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
}
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;
}
Data for graph:
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Graph 1. Minimum value of fitness function y by iteration.
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In x line we have current iteration, in y line — minimum value of function.

Graph 2. Average value of fitness function y by iteration.
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Task 2.
2-D version of Schwefel’s function.
y = xsin(|x[);
In this task, we must represent value of x by a 10-bit binary chromosome.

1. 1 randomly generated a population of 20 parents from 11 genes consisting of 0 and 1.
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2. Sort population using the fitness function y:
the first bit determines the sign of the number(if 1 is a plus, else 0). Remaining ten bits
which number is represented in binary form, which we translate into decimal form and
divide by 1023. Since our range is from -5 to 5, we multiply our number on 5. Then we
sort each parent with respect to the numbers obtained, the less the better.

3. We get a new population with the selected 10 smaller parents and 10 children.

4. We execute this algorithm twenty five iterations.

Source code:

#include "stdafx.h"
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <time.h>

using namespace std;

typedef vector<double> Individual;
typedef vector<Individual> Population;

void makePopulation();

void getPopulation();

int ChromosomeSumm(const Individual& population);

bool ChromosomeSort(const Individual& populationl, const Individual& population2);
void print();

void crossing();



double x, y;

Population population;
int main()

{ srand(time(NULL));

makePopulation();
getPopulation();

sort(population.begin(), population.end(), ChromosomeSort);
ofstream file("DataForGraph.txt", ios::out);

file << "X | Y";
file << '\n';

for (int i = @0; 1 < 25; i++)

{

file << "Iteration N " << i + 1;
file << "\n';

crossing();
sort(population.begin(), population.end(), ChromosomeSort);

for (int j = @; j < population.size(); j++) {
double summ = 0;

summ = population[j][1] * 1 + population[j][2] * 2 + population[j][3]

* 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] * 32 +
population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][1@] * 512;
if (population[j][@] == 0){
summ = summ * -1;

¥

summ = summ / 1023 * 5;

X = summ;

summ = summ * sin(abs(summ));
y = summ;

file << x << " | " << y;

file << '\n';
}
double Min = 9;
double Average = 0;

double AverageSumm = 0;

for (int j = @; j < population.size(); j++) {

Min = population[@][1] * 1 + population[@][2] * 2 + population[@][3]

* 4 + population[@][4] * 8 + population[@][5] * 16 + population[@][6] * 32 +
population[@][7] * 64 + population[@][8] * 128 + population[@][9] * 256 +
population[@][10] * 512;
if (population[@][@] == 0){
Min = Min * -1;

}
Min = Min / 1023 * 5;
Min = Min * sin(abs(Min));

}

for (int j = ©; j < population.size(); j++) {
for (int k = @; k < population[j].size(); k++) {

Average = population[j][1] * 1 + population[j][2] * 2 +
population[j][3] * 4 + population[j][4] * 8 + population[j][5] * 16 + population[j][6] *



32 + population[j][7] * 64 + population[j][8] * 128 + population[j][9] * 256 +
population[j][10] * 512;

if (population[j][@] == ©){

Average = Average * -1;

}

Average = Average / 1023 * 5;

Average = Average * sin(abs(Average));

}

AverageSumm += Average;

}

AverageSumm = AverageSumm / 20;

file << Minimum: << Min <«

file << '\n’;

Average: << AverageSumm;

}

file.close();

print();
system("Pause");
return 0;

}

void makePopulation() {
ofstream file("population.txt", ios::out);
for (int i = 0; 1 < 20; i++) {
for (int j = 0; j < 11; j++) {
file << rand() % 2;
if (j == 11 - 1) file << '\n';

else file << ;

}
}

file.close();

}

void getPopulation() {
ifstream file("population.txt");
for (int i = 0; 1 < 20; i++) {
Individual row;
for (int j = 0; j < 11; j++) {
double value;
file >> value;
row.push_back(value);
}
population.push_back(row);
b

file.close();

}

int ChromosomeSumm(const Individual& population) {

double summ = 0;

summ = population[1] * 1 + population[2] * 2 + population[3] * 4 + population[4] *
8 + population[5] * 16 + population[6] * 32 + population[7] * 64 + population[8] * 128 +
population[9] * 256 + population[1@0] * 512;

if (population[@] == 0){

summ = summ * -1;
}

summ = summ / 1023 * 5;
summ = summ * sin(abs(summ));
return summ;

}

bool ChromosomeSort(const Individual& populationl, const Individual& population2) {
return ChromosomeSumm(populationl) < ChromosomeSumm(population2);

}



void print(){
ofstream file("sort.txt", 1ios::out);
for (int i = @; i < population.size(); i++) {
int tmp = 0;
for (int j = 0; j < population[i].size(); j++) {
file << population[i][j];
if (j == 11 - 1) file << '\n';

else file <« 5

}

file.close();

}

void crossing() {
int CrossingPoint;
int FirstParent, SecondParent;
Population resultPopulation;

for (int i = 0; i < 10; i++){
CrossingPoint = rand() % 11;
FirstParent = rand() % 10;
SecondParent = rand() % 10;
if (FirstParent == SecondParent){
while (FirstParent != SecondParent)

{
¥

SecondParent = rand() % 10;

}

Individual Childl, Child2;

for (int j = ©; j < population[i].size(); j++)

{
if (j < CrossingPoint)
{
Childl.push_back(population[FirstParent][j]);
Child2.push_back(population[SecondParent][j]);
}
else
{
Childl.push_back(population[SecondParent][j]);
Child2.push_back(population[FirstParent][j]);
}
}

resultPopulation.push_back(Childl);
resultPopulation.push_back(Child2);

}

population = resultPopulation;



Data for graph:
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Graph 1. Average value of fitness function y by iteration.
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In x line we have current iteration, in y line — average value of function.



Graph 2. Minimum value of fitness function y by iteration.

Minimum value of fitness function y by iteration.
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In x line we have current iteration, in y line — minimum value of function.
Graph 3. Dots on diagram on 1 iteration.
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Graph 4. Dots on diagram on 4 iteration.
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Graph 4. Dots on diagram on 10 iteration.
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