Modern intelligent IT Lab 2 (21.09.2016)
Student — Maxim Tatachka(ll-10)

Task 1. 20-Dimensional Schwefel’s function:

graph of fitness vs generation

min AVERAGE

Code of program:

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

using namespace std;

// fitness
double fitness (const vector<double>& chromosoma) {
double summ = 0;
for (double i1 = 0; i < chromosoma.size() - 1; 1i++) {
summ += (chromosomal[i] * sin(abs (chromosoma[i]

}

)))

return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {
return fitness(a) < fitness (b);

}

int main ()

srand (time (NULL)) ;

double sizeOfPopulation, rod2Nomer,minl, min, average,

min = 0;
minl = 0;
min2 = 0;
average = 0;
averagel = 0;

sizeOfPopulation = 20;
vector<vector<double>> population;

// started population
for (double i = 0; i < sizeOfPopulation; i++) {
vector<double> chromosoma;

for (double j = 0; j < 20; j++) {
double rn;
rn = (rand() % 1000) / 100 - 5;
chromosoma.push back(rn);

}

population.push back(chromosoma) ;

}
// cout started population
cout << "Started population:" << endl;
for (auto e : population) {
for (auto 1 : e)

average += fitness(e);

if (minl > fitness(e))
minl = fitness (e

{
)

}
}
cout << "min = " << minl << endl;
cout << "AVERAGE = " << average / 200 << endl;

average = 0;

for (double steps = 0; steps < 100; steps++) {
// choose parents and create child
vector<vector<double>> potomki;

min2,averagel;

for (double i = 0; i < sizeOfPopulation; i++)
double rodlNomer = rand() % (population.size()/2);
vector<double> roditel 1 = population[rodlNomer];
double rod2Nomer = rand() % (population.size()/2);

vector<double> roditel 2 = population[rod2Nomer];

// create
vector<double> potomok 1, potomok 2;

double chislo = rand() % (roditel 1l.size()

- 2) + 1;

potomok l.insert (potomok l.end(), roditel 1l.begin(),

roditel 1.begin() + chislo);

potomok 1.insert (potomok l.end(), roditel 2.begin()
chislo, roditel 2.end());

potomok 2.insert (potomok 2.end(), roditel 2.begin(),
roditel 2.begin() + chislo);

chislo,

roditel 1.

potomok 2.insert (potomok 2.end(), roditel 1.begin()

end());

potomki.push back(potomok 1);
potomki.push back (potomok 2);

}

// mutation

double ver mutazii = 0.001; // 0.001

for (double i = 0; 1 < potomki.size(); i++) {
double rn = rand() % 100 + 1;
if (rn < ver mutazii) {

double pos = rand() % (potomki[0].size() - 4) + 2;

double buff = potomki[i] [pos - 11];
potomki[i] [pos - 1] = potomki[i][pos + 1];

potomki[i] [pos + 1] = buff;
}
}
cout << "Iteration: " << steps + 1 <<endl;
for (auto e : population) {
for (auto 1 : e)

average += fitness(e);

if (min > fitness(e)) {
min = fitness(e);
}
}
cout << "min = " << min << endl;
cout << "AVERAGE = " << average / 200 << endl;
if ((min == min2) && (average == averagel))

{
cout << "Finished population:" << endl;

cout << "min = " << min2 << endl;
cout << "AVERAGE = " << average / 200 << endl;
break;

}

averagel = average;

min2 = min;

average = 0;

min = 0;

// select new pop

vector<vector<double>> vse;

vse.insert (vse.end (), population.begin(), population.end()):;
vse.insert (vse.end (), potomki.begin(), potomki.end());

sort (vse.begin (), vse.end(), func);

population.clear();
for (double i = 0; i < (sizeOfPopulation / 2); 1i++) {
population.push back(vse.at (1))

}

}

system ("Pause") ;
return 0;

Work of program:

Started population:

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

min =
AVERAGE =

-1@.

Iteration:
-1a.

Iteration:
-la.

Iteration:
-28.

Iteration:
-25.

Iteration:
-25.

Iteration:
-25.

Iteration:
-25.

8265

15.9285
1

8265

15.9285
2

8633

-7.3541
3

694

-17.7617
4

4886

-22.3841
5

4886

-25.3491
6

4886

-25.4886
7

4886

-25.4886

Finished population:
min = -25.4886
VERAGE = -25.4886

Task 2. 2-D version of Schwefel’s function:
Function= xsin(|x|) Interval =-5;5

graph of fitness vs generation

min AVERAGE

graph of y=x*(sin|x|)

4

3

Y ™

Average

o
o -
o
“ b
-
“
@ o
i
@
B
o a
o
@
“ 2
a
. “
a -
“ Y
o “
- o
Bl
o « =]
o o
G
“ =
2 7
Y “
e
i
e
i “
B o
o 2
o
o
o "
@
L e o o
— T
@
$ “
P X
T <
® e
o a & e e i e a8 g w o o e e o w ol
i ¢ 7 m o om o6 A 4 Ao e Mg i F IS 2 g 2
o o W e n e n o * — &, D 0 b B 3 I S 5
o § Sm 9 £ £ 9 _ _

Code of program:

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

using namespace std;

// fitness
double fitness (const vector<double>& chromosoma) {
double summ = 0;
for (double i = 0; 1 < chromosoma.size() - 1; i++) {
summ = (chromosoma[i] * sin(abs(chromosomali])));

return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {
return fitness(a) < fitness (b);

}

int main ()
{

srand (time (NULL)) ;

double sizeOfPopulation, rod2Nomer, minl, min, average, min2,
mass[10], summl, x, mel;

average
averagel = 0;
sizeOfPopulation = 20;

vector<vector<double>> population;

// started population
for (double i = 0; i < sizeOfPopulation; i++) {
vector<double> chromosoma;

for (double j 0; 3 < 20; j++) {
for (int k = 0; k < 10; k++) {
mass[k] = (rand() % 2);

for (int d = 0; d < 10; d++) {
summl += (mass[d] * (pow (2, mel)));
mel--;

averagel,

}

mel = 9;

X = ((summl / 1023) * 5);
summl = 0;
if (mass[0] == 0){

X
chromosoma.push back(x);

}

else chromosoma.push back(x);

x = 0;

popula

tion.push back (chromosoma) ;

// cout started population
cout << "Started population:" << endl;
for (auto e

}

for (a

population) {

uto 1 : e)

average += fitness(e);

if (mi

cout << "min
cout << "AVE
average = 0;
for (double

roditel

chislo,

roditel

chislo,

// cho
vector
for (d

1.begin ()
roditel 2.
2.begin ()

roditel 1.

nl > fitness (e)

) {
minl = fitness(e);

= " << minl << endl;
RAGE = " << average / 200 << endl;

steps = 0; steps < 100; steps++) {

ose parents and create child

<vector<double>> potomki;

ouble 1 = 0; 1 < sizeOfPopulation; i++) {

double rodlNomer = rand() % (population.size()/2);

vector<double> roditel 1 = populat

ion[rodlNomer];

double rod2Nomer = rand() % (population.size()/2);

vector<double> roditel 2 = populat
// create

vector<double> potomok 1, potomok

double chislo = rand() % (roditel

potomok 1l.insert (potomok 1l.end(),
+ chislo);

potomok 1l.insert (potomok 1l.end(),
end());

potomok 2.insert (potomok 2.end(),
+ chislo);

potomok 2.insert (potomok 2.end(),
end());
potomki.push back (potomok 1);

ion[rod2Nomer] ;

2;

l.size() - 2) + 1;
roditel 1.begin(),
roditel 2.begin()

roditel 2.begin(),

roditel 1.begin()

+

+

potomki.push back(potomok 2);

}

// mutation
double ver mutazii = 0.001; // 0.001
for (double i = 0; 1 < potomki.size(); i++) {
double rn = rand() % 100 + 1;
if (rn < ver mutazii) {
double pos = rand() % (potomki[0].size() - 4) + 2;
double buff = potomki[i] [pos - 1];
potomki[i] [pos - 1] = potomki[i][pos + 1];

potomki[i] [pos + 1] = buff;
}
}
cout << "Iteration: " << steps + 1 <<endl;
for (auto e : population) {

cout << fitness(e) << endl;

for (auto 1 : e)

average += fitness/(e);

if (min > fitness(e)) {
min = fitness(e);
}
}
cout << "min = " << min << endl;
cout << "AVERAGE = " << average / 400 << endl;
if ((min == min2) && (average == averagel))

{

cout << "Finished population:" << endl;

cout << "min = " << min2 << endl;
cout << "AVERAGE = " << average / 400 << endl;
break;

}

averagel = average;

min2 = min;

average = 0;

min = 0;

// select new pop

vector<vector<double>> vse;

vse.insert (vse.end (), population.begin(), population.end()):;
vse.insert (vse.end (), potomki.begin(), potomki.end());

sort (vse.begin (), vse.end(), func);

population.clear () ;
for (double i = 0; i < (sizeOfPopulation); i++) {
population.push back(vse.at (i));

}

system ("Pause") ;
return 0;

Work of program:

Started population:
min = -4.81437
AVERAGE = -2.59911
Iteration: 1
-4.81385

1.39678

-1.97796

-1.19853

-1.63864

-1.78576

-2.31657

-1.68496

-2.2811s6

-4, 23967

-8.582126
-8.118819

1.42863

-2.8874

1.43517

1.33997

-4.81437

B .388082

-1.59764
-8.8438454

min = -4.81437
AVERAGE =

Iteration: 2

-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.

min =
-1.29955 |AyERAGE =

81437
81385
81385
81385
23967
23967
23967
23967
23967
8874
31657
31657
31657
31657
31657
31657
28116
28116
28116
28116
-4.,81437

-3.31817

Iteration: 5
-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

-4.81437

min = -4.81437
VERAGE = -4.31437
Finished population:
min = -4.81437
VERAGE = -4.31437

