
Modern intelligent IT Lab 2 (21.09.2016)
Student – Maxim Tatachka(II-10)

Task 1. 20-Dimensional Schwefel’s function:

Code of program:
#include "stdafx.h"

#include <iostream>

#include <windows.h>

#include <vector>

#include <algorithm>

#include <time.h>

#include <math.h>

using namespace std;

// fitness

double fitness(const vector<double>& chromosoma) {

 double summ = 0;

 for (double i = 0; i < chromosoma.size() - 1; i++) {

 summ += (chromosoma[i] * sin(abs(chromosoma[i])));

 }

 return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {

 return fitness(a) < fitness(b);

}

int main()

-30

-25

-20

-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7

graph of fitness vs generation

min AVERAGE

{

 srand(time(NULL));

 double sizeOfPopulation, rod2Nomer,min1, min, average, min2,average1;

 min = 0;

 min1 = 0;

 min2 = 0;

 average = 0;

 average1 = 0;

 sizeOfPopulation = 20;

 vector<vector<double>> population;

 // started population

 for (double i = 0; i < sizeOfPopulation; i++) {

 vector<double> chromosoma;

 for (double j = 0; j < 20; j++) {

 double rn;

 rn = (rand() % 1000) / 100 - 5;

 chromosoma.push_back(rn);

 }

 population.push_back(chromosoma);

 }

 // cout started population

 cout << "Started population:" << endl;

 for (auto e : population) {

 for (auto l : e)

 average += fitness(e);

 if (min1 > fitness(e)){

 min1 = fitness(e);

 }

 }

 cout << "min = " << min1 << endl;

 cout << "AVERAGE = " << average / 200 << endl;

 average = 0;

 for (double steps = 0; steps < 100; steps++) {

 // choose parents and create child

 vector<vector<double>> potomki;

 for (double i = 0; i < sizeOfPopulation; i++) {

 double rod1Nomer = rand() % (population.size()/2);

 vector<double> roditel_1 = population[rod1Nomer];

 double rod2Nomer = rand() % (population.size()/2);

 vector<double> roditel_2 = population[rod2Nomer];

 // create

 vector<double> potomok_1, potomok_2;

 double chislo = rand() % (roditel_1.size() - 2) + 1;

 potomok_1.insert(potomok_1.end(), roditel_1.begin(),

roditel_1.begin() + chislo);

 potomok_1.insert(potomok_1.end(), roditel_2.begin() +

chislo, roditel_2.end());

 potomok_2.insert(potomok_2.end(), roditel_2.begin(),

roditel_2.begin() + chislo);

 potomok_2.insert(potomok_2.end(), roditel_1.begin() +

chislo, roditel_1.end());

 potomki.push_back(potomok_1);

 potomki.push_back(potomok_2);

 }

 // mutation

 double ver_mutazii = 0.001; // 0.001

 for (double i = 0; i < potomki.size(); i++) {

 double rn = rand() % 100 + 1;

 if (rn < ver_mutazii) {

 double pos = rand() % (potomki[0].size() - 4) + 2;

 double buff = potomki[i][pos - 1];

 potomki[i][pos - 1] = potomki[i][pos + 1];

 potomki[i][pos + 1] = buff;

 }

 }

 cout << "Iteration: " << steps + 1 <<endl;

 for (auto e : population) {

 for (auto l : e)

 average += fitness(e);

 if (min > fitness(e)){

 min = fitness(e);

 }

 }

 cout << "min = " << min << endl;

 cout << "AVERAGE = " << average / 200 << endl;

 if ((min == min2) && (average == average1))

 {

 cout << "Finished population:" << endl;

 cout << "min = " << min2 << endl;

 cout << "AVERAGE = " << average / 200 << endl;

 break;

 }

 average1 = average;

 min2 = min;

 average = 0;

 min = 0;

 // select new pop

 vector<vector<double>> vse;

 vse.insert(vse.end(), population.begin(), population.end());

 vse.insert(vse.end(), potomki.begin(), potomki.end());

 sort(vse.begin(), vse.end(), func);

 population.clear();

 for (double i = 0; i < (sizeOfPopulation / 2); i++) {

 population.push_back(vse.at(i));

 }

 }

 system("Pause");

 return 0;

 }

Work of program:

Task 2. 2-D version of Schwefel’s function:
Function= xsin(|x|) Interval = -5;5

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5

graph of fitness vs generation

min AVERAGE

Start:

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

graph of y=x*(sin|x|)

Average:

Final:

Code of program:
#include "stdafx.h"

#include <iostream>

#include <windows.h>

#include <vector>

#include <algorithm>

#include <time.h>

#include <math.h>

using namespace std;

// fitness

double fitness(const vector<double>& chromosoma) {

 double summ = 0;

 for (double i = 0; i < chromosoma.size() - 1; i++) {

 summ = (chromosoma[i] * sin(abs(chromosoma[i])));

 }

 return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {

 return fitness(a) < fitness(b);

}

int main()

{

 srand(time(NULL));

 double sizeOfPopulation, rod2Nomer, min1, min, average, min2, average1,

mass[10],summ1,x,mel;

 x = 0;

 mel = 9;

 summ1 = 0;

 min = 0;

 min1 = 0;

 min2 = 0;

 average = 0;

 average1 = 0;

 sizeOfPopulation = 20;

 vector<vector<double>> population;

 // started population

 for (double i = 0; i < sizeOfPopulation; i++) {

 vector<double> chromosoma;

 for (double j = 0; j < 20; j++) {

 for (int k = 0; k < 10; k++){

 mass[k] = (rand() % 2);

 }

 for (int d = 0; d < 10; d++){

 summ1 += (mass[d] * (pow(2, mel)));

 mel--;

 }

 mel = 9;

 x = ((summ1 / 1023) * 5);

 summ1 = 0;

 if (mass[0] == 0){

 x = -x;

 chromosoma.push_back(x);

 }

 else chromosoma.push_back(x);

 x = 0;

 }

 population.push_back(chromosoma);

 }

 // cout started population

 cout << "Started population:" << endl;

 for (auto e : population) {

 for (auto l : e)

 average += fitness(e);

 if (min1 > fitness(e)){

 min1 = fitness(e);

 }

 }

 cout << "min = " << min1 << endl;

 cout << "AVERAGE = " << average / 200 << endl;

 average = 0;

 for (double steps = 0; steps < 100; steps++) {

 // choose parents and create child

 vector<vector<double>> potomki;

 for (double i = 0; i < sizeOfPopulation; i++) {

 double rod1Nomer = rand() % (population.size()/2);

 vector<double> roditel_1 = population[rod1Nomer];

 double rod2Nomer = rand() % (population.size()/2);

 vector<double> roditel_2 = population[rod2Nomer];

 // create

 vector<double> potomok_1, potomok_2;

 double chislo = rand() % (roditel_1.size() - 2) + 1;

 potomok_1.insert(potomok_1.end(), roditel_1.begin(),

roditel_1.begin() + chislo);

 potomok_1.insert(potomok_1.end(), roditel_2.begin() +

chislo, roditel_2.end());

 potomok_2.insert(potomok_2.end(), roditel_2.begin(),

roditel_2.begin() + chislo);

 potomok_2.insert(potomok_2.end(), roditel_1.begin() +

chislo, roditel_1.end());

 potomki.push_back(potomok_1);

 potomki.push_back(potomok_2);

 }

 // mutation

 double ver_mutazii = 0.001; // 0.001

 for (double i = 0; i < potomki.size(); i++) {

 double rn = rand() % 100 + 1;

 if (rn < ver_mutazii) {

 double pos = rand() % (potomki[0].size() - 4) + 2;

 double buff = potomki[i][pos - 1];

 potomki[i][pos - 1] = potomki[i][pos + 1];

 potomki[i][pos + 1] = buff;

 }

 }

 cout << "Iteration: " << steps + 1 <<endl;

 for (auto e : population) {

 cout << fitness(e) << endl;

 for (auto l : e)

 average += fitness(e);

 if (min > fitness(e)){

 min = fitness(e);

 }

 }

 cout << "min = " << min << endl;

 cout << "AVERAGE = " << average / 400 << endl;

 if ((min == min2) && (average == average1))

 {

 cout << "Finished population:" << endl;

 cout << "min = " << min2 << endl;

 cout << "AVERAGE = " << average / 400 << endl;

 break;

 }

 average1 = average;

 min2 = min;

 average = 0;

 min = 0;

 // select new pop

 vector<vector<double>> vse;

 vse.insert(vse.end(), population.begin(), population.end());

 vse.insert(vse.end(), potomki.begin(), potomki.end());

 sort(vse.begin(), vse.end(), func);

 population.clear();

 for (double i = 0; i < (sizeOfPopulation); i++) {

 population.push_back(vse.at(i));

 }

 }

 system("Pause");

 return 0;

 }

Work of program:

