
Contemporary Intelligent Information Technology (CIIT) 

Practice #2 (21/09/2016) 

Siarhei Savaniuk (AI-10) 

 

Improves:  

Complete task 2 (add graphics) 

Add description for tasks 

Refactoring code 

 

Task 1 (20-Dimensional Schwefel's function) 

1. Minimize  

y = x1 sin(|x1|) + x2 sin(|x2|) + · · · + x20 sin(|x20|) in the following way: 

(1) Represent each of xi(i = 1, · · · , 20) by a chromosome with 20 genes. 

(2) Create a population of 20 chromosomes at random, with fitness being y. 

(3) Evolve this population till fitness dosen’t change. 

2.  Show 

(1) the graph of fitness vs generation. 

Source code (write in Java): 

File Individual.java 
import java.util.Arrays; 

import java.util.concurrent.ThreadLocalRandom; 

 

class Individual implements Comparable<Individual> { 

 

    public static final int GENE_LENGTH = 20; 

 

    private double[] genes; 

    private double fitnessValue; 

 

    public Individual(boolean initialize) { 

        genes = new double[GENE_LENGTH]; 

 

        if (initialize) { 

            generateIndividual(); 

            fitnessValue = getFitness(); 

        } 

    } 

 

    public Individual(double[] genes) { 

        this.genes = genes; 

        fitnessValue = getFitness(); 



    } 

 

    public double getFitnessValue() { 

        return fitnessValue; 

    } 

 

    public void setFitnessValue(int fitnessValue) { 

        this.fitnessValue = fitnessValue; 

    } 

 

    public void generateIndividual() { 

        for (int i = 0; i < GENE_LENGTH; ++i) { 

            genes[i] = ThreadLocalRandom.current().nextDouble(6.0) - 5.0; 

        } 

    } 

 

    public double getFitness() { 

        double fitness = 0.0; 

 

        for (int i = 0; i < GENE_LENGTH; ++i) { 

            fitness += genes[i] * Math.sin(Math.abs(genes[i])); 

        } 

 

        return fitness; 

    } 

 

    public double[] getGenesBeforeCutPoint(int cutPoint) { 

        double[] genes = new double[cutPoint]; 

 

        System.arraycopy(this.genes, 0, genes, 0, cutPoint); 

 

        return genes; 

    } 

 

    public double[] getGenesAfterCutPoint(int cutPoint) { 

        double[] genes = new double[GENE_LENGTH - cutPoint]; 

 

        System.arraycopy(this.genes, cutPoint, genes, 0, genes.length); 

 

        return genes; 

    } 

 

    @Override 

    public String toString() { 

        return "Individual{" + 

                "fitnessValue=" + fitnessValue + 

                ", genes=" + Arrays.toString(genes) + 

                '}' + '\n'; 

    } 

 

    @Override 

    public int compareTo(Individual o) { 

        return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue() 

== fitnessValue) ? 0 : -1); 

    } 

} 

 

File Population.java: 
import java.util.Arrays; 

 

class Population { 

 

    public static final int POPULATION_SIZE = 20; 



    private Individual[] individuals; 

 

    public Population(boolean initialize) { 

        individuals = new Individual[POPULATION_SIZE]; 

 

        if (initialize) { 

            for (int i = 0; i < POPULATION_SIZE; ++i) { 

                individuals[i] = new Individual(true); 

            } 

        } 

    } 

 

    public Population(Individual[] individuals) { 

        this.individuals = new Individual[POPULATION_SIZE]; 

        System.arraycopy(individuals, 0, this.individuals, 0, 

individuals.length); 

    } 

 

    public Individual getIndividual(int index) { 

        return individuals[index]; 

    } 

 

    public void addIndividual(int index, Individual individual) { 

        individuals[index] = individual; 

    } 

 

    public Individual[] getHalfFittestIndividuals() { 

        Individual[] fittestIndividuals = new Individual[POPULATION_SIZE / 

2]; 

 

        System.arraycopy(individuals, 0, fittestIndividuals, 0, 

fittestIndividuals.length); 

 

        return fittestIndividuals; 

    } 

 

    public double getMaxFitness() { 

        return individuals[0].getFitnessValue(); 

    } 

 

    public double getAverageFitness() { 

        double sum = 0; 

 

        for (int i = 0; i < POPULATION_SIZE; ++i) { 

            sum += individuals[i].getFitnessValue(); 

        } 

 

        return sum / POPULATION_SIZE; 

    } 

 

    public Individual[] getAllIndividuals() { 

        return individuals; 

    } 

 

    @Override 

    public String toString() { 

        return "Population{\n" + Arrays.toString(individuals) + "}\n"; 

    } 

} 

 

 

 



File GeneticAlgorithm.java: 
import java.util.Arrays; 

import java.util.concurrent.ThreadLocalRandom; 

 

public class GeneticAlgorithm { 

 

    private Population population; 

 

    public GeneticAlgorithm(Population population) { 

        this.population = population; 

    } 

 

    public Population run() { 

        Arrays.sort(population.getAllIndividuals()); 

        Population halfPopulation = new 

Population(population.getHalfFittestIndividuals()); 

        Population nextGeneration = new 

Population(halfPopulation.getAllIndividuals()); 

 

        for (int i = 0, j = Population.POPULATION_SIZE / 2; i < 

Population.POPULATION_SIZE / 4; ++i, j += 2) { 

            Individual[] parents = chooseParents(halfPopulation); 

 

            int cutPoint = 

ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH); 

 

            Individual[] descendants = crossover(parents, cutPoint); 

 

            nextGeneration.addIndividual(j, descendants[0]); 

            nextGeneration.addIndividual(j + 1, descendants[1]); 

        } 

 

        population = nextGeneration; 

 

        Arrays.sort(population.getAllIndividuals()); 

 

        return population; 

    } 

 

    private Individual[] chooseParents(Population fittestIndividuals) { 

        return new Individual[] 

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10)), 

                

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10))}; 

    } 

 

    private Individual[] crossover(Individual[] parents, int curPoint) { 

        Individual[] descendants = new Individual[2]; 

 

        double[] firstDescendantGenes = 

concat(parents[0].getGenesBeforeCutPoint(curPoint), 

                parents[1].getGenesAfterCutPoint(curPoint)); 

        double[] secondIndividualGenes = 

concat(parents[0].getGenesAfterCutPoint(curPoint), 

                parents[1].getGenesBeforeCutPoint(curPoint)); 

 

        descendants[0] = new Individual(firstDescendantGenes); 

        descendants[1] = new Individual(secondIndividualGenes); 

 

        return descendants; 

    } 

 

    private double[] concat(double[] genes1, double[] genes2) { 



        double[] genes = new double[Individual.GENE_LENGTH]; 

 

        System.arraycopy(genes1, 0, genes, 0, genes1.length); 

        System.arraycopy(genes2, 0, genes, genes1.length, genes2.length); 

 

        return genes; 

    } 

} 

 

File Main.java: 
import java.io.*; 

import java.util.ArrayList; 

import java.util.List; 

 

public class Main { 

 

    public static void main(String[] args) throws IOException { 

        Population population = new Population(true); 

        GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population); 

 

        List<Double> fitness = new ArrayList<>(); 

        List<Double> average = new ArrayList<>(); 

 

        for (int i = 0; i < 100; ++i) { 

            Population newPopulation = geneticAlgorithm.run(); 

            System.out.println("Fitness = " + newPopulation.getMaxFitness() + 

", Average = " + newPopulation.getAverageFitness()); 

            fitness.add(newPopulation.getMaxFitness()); 

            average.add(newPopulation.getAverageFitness()); 

 

        } 

 

        System.out.println("FITNESS"); 

        for (Double val : fitness) { 

            System.out.printf("%.2f\n", val); 

        } 

 

        System.out.println("\n\nAVERAGE"); 

        for (Double val : average) { 

            System.out.printf("%.2f\n", val); 

        } 

    } 

} 

 

 

 

 

 

 

 

 

 

 



Results: 

The graph of fitness vs generation: 

 

The graph of average vs generation: 

 
 

 

 

 

 

 

 

 

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80

fi
tn

es
s

generation

Graph of fitness vs generation

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80

av
er

ag
e

generation

Graph of average vs generation



Task 2 (2-D version of Schwefel's function) 

1. Minimize  

𝑦 =  𝑥 sin(|𝑥|) in the following way: 

(1) Represent value of x by a 10-bit binary chromosome. 

(2) Create a population of 20 chromosomes at random, with fitness being y. 

(3) Evolve this population till fitness doesn’t change. 

2. Show 

  (1) the graph of fitness vs generation. 

(2) all 20 points (x; y) in the 1st, an intermediate, and final generation. 

Source code (written in Java) 

File Individual.java: 

import java.util.Arrays; 

import java.util.concurrent.ThreadLocalRandom; 

 

class Individual implements Comparable<Individual> { 

 

    public static final int GENE_LENGTH = 10; 

 

    private int[] genes; 

    private double fitnessValue; 

    private double x; 

 

    public Individual(boolean initialize) { 

        genes = new int[GENE_LENGTH]; 

 

        if (initialize) { 

            generateIndividual(); 

            fitnessValue = getFitness(); 

        } 

    } 

 

    public Individual(int[] genes) { 

        this.genes = genes; 

        fitnessValue = getFitness(); 

    } 

 

    public double getFitnessValue() { 

        return fitnessValue; 

    } 

 

    public void setFitnessValue(int fitnessValue) { 

        this.fitnessValue = fitnessValue; 

    } 

 

    public double getX() { 

        return x; 

    } 



    public void generateIndividual() { 

        for (int i = 0; i < GENE_LENGTH; ++i) { 

            genes[i] = ThreadLocalRandom.current().nextInt(2); 

        } 

    } 

 

    public double getFitness() { 

        x = convertToDecimal(); 

        return x * Math.sin(Math.abs((x))); 

    } 

 

    private double convertToDecimal() { 

        int dec = 0; 

        for (int i = 0; i < 10; ++i) { 

            if (genes[i] == 1) { 

                dec += 1 * Math.pow(2, i); 

            } 

        } 

        dec = (genes[0] == 1) ? -dec: dec; 

        return dec * 5.0 / 1023; 

    } 

 

    public int[] getGenesBeforeCutPoint(int cutPoint) { 

        int[] genes = new int[cutPoint]; 

 

        System.arraycopy(this.genes, 0, genes, 0, cutPoint); 

 

        return genes; 

    } 

 

    public int[] getGenesAfterCutPoint(int cutPoint) { 

        int[] genes = new int[GENE_LENGTH - cutPoint]; 

 

        System.arraycopy(this.genes, cutPoint, genes, 0, genes.length); 

 

        return genes; 

    } 

    @Override 

    public String toString() { 

        return "Individual{" + 

                "fitnessValue=" + fitnessValue + 

                ", genes=" + Arrays.toString(genes) + 

                '}' + '\n'; 

    } 

 

    @Override 

    public int compareTo(Individual o) { 

        return (o.getFitnessValue() < fitnessValue ? 1 : (o.getFitnessValue() 

== fitnessValue) ? 0 : -1); 

    } 

} 

 

File Population.java: 
import java.util.Arrays; 

 

class Population { 

 

    public static final int POPULATION_SIZE = 20; 

 

    private Individual[] individuals; 

 

    public Population(boolean initialize) { 

        individuals = new Individual[POPULATION_SIZE]; 



        if (initialize) { 

            for (int i = 0; i < POPULATION_SIZE; ++i) { 

                individuals[i] = new Individual(true); 

            } 

        } 

    } 

 

    public Population(Individual[] individuals) { 

        this.individuals = new Individual[POPULATION_SIZE]; 

        System.arraycopy(individuals, 0, this.individuals, 0, 

individuals.length); 

    } 

 

    public Individual getIndividual(int index) { 

        return individuals[index]; 

    } 

 

    public void addIndividual(int index, Individual individual) { 

        individuals[index] = individual; 

    } 

 

    public Individual[] getHalfFittestIndividuals() { 

        Individual[] fittestIndividuals = new Individual[POPULATION_SIZE / 

2]; 

 

        System.arraycopy(individuals, 0, fittestIndividuals, 0, 

fittestIndividuals.length); 

 

        return fittestIndividuals; 

    } 

 

    public Individual[] getFiveIndividuals() { 

        Individual[] fittestIndividuals = new Individual[POPULATION_SIZE / 

4]; 

 

        System.arraycopy(individuals, 0, fittestIndividuals, 0, 

fittestIndividuals.length); 

 

        return fittestIndividuals; 

    } 

 

    public double getMaxFitness() { 

        return individuals[0].getFitnessValue(); 

    } 

 

    public double getAverageFitness() { 

        double sum = 0; 

 

        for (int i = 0; i < POPULATION_SIZE; ++i) { 

            sum += individuals[i].getFitnessValue(); 

        } 

 

        return sum / POPULATION_SIZE; 

    } 

 

    public Individual[] getAllIndividuals() { 

        return individuals; 

    } 

 

    @Override 

    public String toString() { 

        return "Population{\n" + Arrays.toString(individuals) + "}\n"; 

    } 

} 



File GeneticAlgorithm.java: 
import java.util.Arrays; 

import java.util.concurrent.ThreadLocalRandom; 

 

public class GeneticAlgorithm { 

 

    private Population population; 

 

    public GeneticAlgorithm(Population population) { 

        this.population = population; 

    } 

 

    public Population run() { 

        Arrays.sort(population.getAllIndividuals()); 

 

        Population halfPopulation = new 

Population(population.getHalfFittestIndividuals()); 

        Population nextGeneration = new 

Population(halfPopulation.getAllIndividuals()); 

 

        for (int i = 0, j = Population.POPULATION_SIZE / 2; i < 

Population.POPULATION_SIZE / 4; ++i, j += 2) { 

            Individual[] parents = chooseParents(halfPopulation); 

 

            int cutPoint = 

ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH); 

 

            Individual[] descendants = crossover(parents, cutPoint); 

 

            nextGeneration.addIndividual(j, descendants[0]); 

            nextGeneration.addIndividual(j + 1, descendants[1]); 

        } 

 

        population = nextGeneration; 

 

        Arrays.sort(population.getAllIndividuals()); 

 

        return population; 

    } 

 

    private Individual[] chooseParents(Population fittestIndividuals) { 

        return new Individual[] 

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10)), 

                

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(10))}; 

    } 

 

    private Individual[] crossover(Individual[] parents, int curPoint) { 

        Individual[] descendants = new Individual[2]; 

 

        int[] firstDescendantGenes = 

concat(parents[0].getGenesBeforeCutPoint(curPoint), 

                parents[1].getGenesAfterCutPoint(curPoint)); 

        int[] secondIndividualGenes = 

concat(parents[0].getGenesAfterCutPoint(curPoint), 

                parents[1].getGenesBeforeCutPoint(curPoint)); 

 

        descendants[0] = new Individual(firstDescendantGenes); 

        descendants[1] = new Individual(secondIndividualGenes); 

 

        return descendants; 

    } 

 



    private int[] concat(int[] genes1, int[] genes2) { 

        int[] genes = new int[Individual.GENE_LENGTH]; 

 

        System.arraycopy(genes1, 0, genes, 0, genes1.length); 

        System.arraycopy(genes2, 0, genes, genes1.length, genes2.length); 

 

        return genes; 

    } 

} 

 

File Main.java: 
import java.io.*; 

import java.util.ArrayList; 

import java.util.List; 

 

public class Main { 

 

    public static void main(String[] args) throws IOException { 

 

        Population population = new Population(true); 

        GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population); 

 

        List<Double> max = new ArrayList<>(); 

        List<Double> average = new ArrayList<>(); 

 

        double min = 0.0, copyMin = 0.0; 

 

        for (int i = 0; i < 10; ++i) { 

            System.out.println("Iteration #" + (i + 1)); 

            Population newPopulation = geneticAlgorithm.run(); 

            min = newPopulation.getMaxFitness(); 

            System.out.println("Min = " + min + ", Average = " + 

newPopulation.getAverageFitness()); 

            for (Individual individuals : newPopulation.getAllIndividuals()) 

{ 

                System.out.println(individuals.getX()); 

            } 

            max.add(newPopulation.getMaxFitness()); 

            average.add(newPopulation.getAverageFitness()); 

 

        } 

 

} 

 

 

 

 

 

 

 

 

 

 



Results: 

The graph of fitness vs generation: 

 
 

The graph of average vs generation: 

 

 

 

 

 

 

 

 

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8 10 12 14 16 18 20

fi
tn

es
s

generation

Graph of fitness vs generation

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

generation

Graph of average vs generation



The graph for 1-st generation: 

 

The graph for intermediate generation: 

 

 

 

 

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

1-st generation

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Intermediate generation



The graph for finish generation: 

 
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Finish generation


