TASK1:

Comments for the code your can see in previous work. This code have small changes.
public class Main {

public static Double[][] generation = new Double[20][20];

public static Double[][] good = new Double[10][20];

public static Double[][] childes new Double[10][20];

public static Integer childCount = 0;
public static Integer checkCount = 0;
public static Double prevMax = 0.0;
public static void main(String[] args) {

createGenerate();
while(true) {
Arrays.sort(generation, new Comparator<Double[]>() {
@Override
public int compare(Double[] ol, Double[] 02) {
Double intl = fitness(ol);
Double int2 = fitness(o02);
return (int)(intl - int2) * 100;
}
});
Double max = fitness(generation[0]);
if (prevMax.equals(max))
checkCount ++;
else
checkCount = 0;
prevMax = max;
System.out.printf("%.3f %.3f", max,average());
System.out.println()
if (checkCount > 30)
return;

{

}
setGood();
Random random = new Random();
childCount = 0;
for (int i = 0; i < 5; i++) {
createChildes(good[random.nextInt(10)], good[random.nextInt(10)1);
}
createNewGeneration();
}
}
public static void createGenerate() {
Random random = new Random();
for(int i=0;1i<20;i++) {
for (int j = 0; j < 20; j++) {
generation[i][j] = random.nextInt(1000) / 100.0 - 5;
}
}
}
public static Double fitness(Double[] obj) {
Double sum = 0.0;
for (int i=0; i<obj.length;i++) {
sum += obj[i] * Math.sin(Math.abs(obj[i]));
}
return sum;
}
public static void setGood() {
for(int i =0; i< 10; i++) {
good[i] = generation[il;

}

}

}

public static void createChildes(Double[] parentl,

}

Random random = new Random();
Integer delimiter = random.nextInt(20);
Double[] childl = new Double[20];
Double[] child2 = new Double[20];
for(int i = 0;1<20;i++) {

if (i<=delimiter)
childl[i] = parentl[i];
else
childl[i] = parent2[i];
}
for(int i = 0;1<20;i++) {
if (i<=delimiter)
child2[i] = parent2[i];
else
child2[i] = parentl[i];

}

childes[childCount] = childl;
childCount++;
childes[childCount] = child2;
childCount++;

public static void createNewGeneration() {

}

for (int i=0;i<20;i++) {
if(i<10)
generation[i] = good[il;
else
generation[i] = childes[i-10];

}

public static Double average() {

Double s = 0.0;
for (int 1=0;i<20;i++) {

s+= fitness(generation[i]);
}
Double average = s / 100.0;
return average;

Double[] parent2) {

On the graph, we can see, how minimization of function changed after each step.

-5

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
1\3 &5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Column A
= Column B

TASK2:
Comments for the code your can see in previous work. This code have small changes.

public class Main {
public static Integer N = 11;
public static Integer[][] generation = new Integer[20][N];
public static Integer[][] good = new Integer[10][N];
public static Integer[][] childes = new Integer[10][N];
public static Integer childCount
public static Integer checkCount
public static Double prevMax = 0.0;
public static Double prevAverage = 0.0;
public static void main(String[] args) {
createGenerate();
while(true) {
Arrays.sort(generation, new Comparator<Integer[]>() {
@Override
public int compare(Integer[] ol, Integer[] 02) {
Double intl = fitness(ol);
Double int2 = fitness(02);
return (int) (intl - int2) * 100;

=0;
= 0;

}
});
Double max = fitness(generation[0]);
Double average = average();
if (prevMax.equals(max)) {
checkCount ++;
}
else
checkCount = 0;
prevMax = max;
System.out.printf("%.3f %.3f", max,average());
for(int 1=0;1<20;i++) {
System.out.printf("%10.3f",calcX(generation[i]));
}
System.out.println();
if (checkCount > 10) {
return;
}
setGood();
Random random = new Random();
childCount = 0;
for (int 1 = 0; 1 < 5; i++) {
createChildes(good[random.nextInt(10)], good[random.nextInt(10)]);
}
createNewGeneration();
}
}
public static void createGenerate() {
Random random = new Random();
for(int 1=0;i<20;i++) {
for (int j = 0; j < N; j++) {
generation[i]l[j] = random.nextInt(2);
}
}

}
public static Double fitness(Integer[] obj) {
Double x = calcX(obj);

return x * Math.sin(Math.abs(x));

}
public static Double calcX(Integer[] obj) {
String str = "";
for (int i = 1; i < obj.length; i++) {
str += obj[i].toString();
}
if(obj[0] == 1)
return Integer.parseInt(str,2)/ 1023.0 * 5;
else
return -Integer.parseInt(str,2)/ 1023.0 * 5;
}

public static void setGood() {
for(int i =0; i< 10; i++) {
good[i] = generation[i];
}

}
public static void createChildes(Integer[] parentl, Integer[] parent2) {
Random random = new Random();
Integer delimiter = random.nextInt(N);
Integer[] childl = new Integer[N];
Integer[] child2 = new Integer[N];
for(int i = 0;i<N;i++) {
if (i<=delimiter)
childl[i] = parentl[i];
else
childl[i] = parent2[i];
}
for(int i = 0;i<N;i++) {
if (i<=delimiter)
child2[i] = parent2[i];
else
child2[i] = parentl[i];

}

childes[childCount] = childl;
childCount++;
childes[childCount] = child2;

childCount++;
}
public static void createNewGeneration() {
for (int 1=0;i<20;i++) {
if (i<10)
generation[i] = good[i];
else

generation[il childes[i-101;

}
}

public static Double average() {
Double s = 0.0;
for (int 1i=0;i<20;i++) {
s+= fitness(generation[i]);
}
Double average = s / 20;
return average;

[=]
=]

Y

i
[T
=]

i
i
[

=50 45 40 3.5 30 <25 A0 -l5 -10 DS o ©°5 10 15 20 25 30 35 40 45 50
MocTpoeH Ha calTe yobi.ru

First graph, where we create first population for function. We can see random
distribution of points.

[=]
>

[=]
=]

Ln

i
[FE]
(=]

i
[
L

_—
=3.3

S50 45 40 3.0 -1
MocTposH Ha cakTe yoboru

5 -0 -15 -10 03 0

A

Second graph, middle population(between first and last). We can see,

some chromosomes stay near minimum of function.

that already

A

Ln

i
[FE]
(=]

i
[
L

S50 435 40 35 30 -

15 20 -15 -10 D35 o 05 10 15 20 25 30 35 40 45 50
MocTposH Ha cakTe yoboru

Third graph(Last population from iterations). We can see, almost all chromosomes
stay on minimum of function.

Some results depend on start population, we got different results in middle and
start, but all results on last iteration tends to a minimum.

