TASK1:

Comments for the code your can see in previous work. This code have small changes.
public class Main {

public static Double[][] generation = new Double[20][20];

public static Double[][] good = new Double[10][20];

public static Double[][] childes new Double[10][20];

public static Integer childCount = 0;
public static Integer checkCount = 0;
public static Double prevMax = 0.0;
public static void main(String[] args) {

createGenerate();
while(true) {
Arrays.sort(generation, new Comparator<Double[]>() {
@Override
public int compare(Double[] ol, Double[] 02) {
Double intl = fitness(ol);
Double int2 = fitness(o02);
return (int)(intl - int2) * 100;
}
});
Double max = fitness(generation[0]);
if (prevMax.equals(max))
checkCount ++;
else
checkCount = 0;
prevMax = max;
System.out.printf("%.3f %.3f", max,average());
System.out.println()
if (checkCount > 30)
return;

{

}
setGood();
Random random = new Random();
childCount = 0;
for (int i = 0; i < 5; i++) {
createChildes(good[random.nextInt(10)], good[random.nextInt(10)1);
}
createNewGeneration();
}
}
public static void createGenerate() {
Random random = new Random();
for(int i=0;1i<20;i++) {
for (int j = 0; j < 20; j++) {
generation[i][j] = random.nextInt(1000) / 100.0 - 5;
}
}
}
public static Double fitness(Double[] obj) {
Double sum = 0.0;
for (int i=0; i<obj.length;i++) {
sum += obj[i] * Math.sin(Math.abs(obj[i]));
}
return sum;
}
public static void setGood() {
for(int i =0; i< 10; i++) {
good[i] = generation[il;

}

}

}

public static void createChildes(Double[] parentl,

}

Random random = new Random();
Integer delimiter = random.nextInt(20);
Double[] childl = new Double[20];
Double[] child2 = new Double[20];
for(int i = 0;1<20;i++) {

if (i<=delimiter)
childl[i] = parentl[i];
else
childl[i] = parent2[i];
}
for(int i = 0;1<20;i++) {
if (i<=delimiter)
child2[i] = parent2[i];
else
child2[i] = parentl[i];

}

childes[childCount] = childl;
childCount++;
childes[childCount] = child2;
childCount++;

public static void createNewGeneration() {

}

for (int i=0;i<20;i++) {
if(i<10)
generation[i] = good[il;
else
generation[i] = childes[i-10];

}

public static Double average() {

Double s = 0.0;
for (int 1=0;i<20;i++) {

s+= fitness(generation[i]);
}
Double average = s / 100.0;
return average;

Double[] parent2) {

On the graph, we can see, how minimization of function changed after each step.

-5

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
1\3 &5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Column A
= Column B

TASK2:

public class Main {
public static Integer N = 11;
public static Integer[][] generation = new Integer[20][N];
public static Integer[][] good = new Integer[10][N];
public static Integer[][] childes = new Integer[10][N];
public static Integer childCount
public static Integer checkCount
public static Double prevMax = 0.0;
public static Double prevAverage = 0.0;
public static void main(String[] args) {
createGenerate();
while(true) {
Arrays.sort(generation, new Comparator<Integer[]>() {
@Override
public int compare(Integer[] ol, Integer[] 02) {
Double intl = fitness(ol);
Double int2 = fitness(02);
return (int) (intl - int2) * 100;

= 0;
= 0;

}
1)
Double max = fitness(generation[0]);
Double average = average();
if (prevMax.equals(max)) {
checkCount ++;
}
else
checkCount = 0;
prevMax = max;
System.out.printf("%.3f %.3f", max,average());
for(int i=0;1i<20;i++) {
System.out.printf("%10.3f",calcX(generation[i]));
}
System.out.println();
if (checkCount > 10) {
return;
}
setGood();
Random random = new Random();
childCount = 0;
for (int i = 0; 1 < 5; i++) {
createChildes(good[random.nextInt(10)], good[random.nextInt(10)]);
}
createNewGeneration();
}
}
public static void createGenerate() {
Random random = new Random();
for(int 1i=0;1<20;i++) {
for (int j = 0; j < N; j++) {
generation[i]l[j] = random.nextInt(2);
}
}
}
public static Double fitness(Integer[] obj) {
Double x = calcX(obj);
return x * Math.sin(Math.abs(x));

public static Double calcX(Integer[] obj) {
String str = "";
for (int i = 1; i < obj.length; i++) {
str += obj[i].toString();
}
if(obj[0] == 1)
return Integer.parseInt(str,2)/ 1023.0 * 5;
else
return -Integer.parseInt(str,2)/ 1023.0 * 5;
}
public static void setGood() {
for(int i =0; i< 10; i++) {
good[i] = generation[il];
}

}
public static void createChildes(Integer[] parentl, Integer[] parent2) {

Random random = new Random();
Integer delimiter = random.nextInt(N);
Integer[] childl = new Integer[N];
Integer[] child2 new Integer[N];
for(int 1 = 0;i<N;i++) {
if (i<=delimiter)
childl[i] = parentl[i];
else
childl[i] = parent2[i];

}
for(int i = 0;i<N;i++) {
if (i<=delimiter)
child2[i] = parent2[i];
else
child2[i] = parentl[i];

}

childes[childCount] = childl;
childCount++;
childes[childCount] = child2;
childCount++;

}

public static void createNewGeneration() {
for (int 1i=0;i<20;i++) {
if(i<10)
generation[i]
else
generation[il

good[i];

childes[i-10];
}
}
public static Double average() {
Double s = 0.0;
for (int 1=0;1i<20;i++) {
s+= fitness(generation[il]);
}
Double average = s / 20;
return average;

Red line - average values

Blue line - minimum values

Column A
= Column B

[=]
>

[=]
=]

Ln

i
[FE]
(=]

i
[
L

_—
=3.3

S50 45 40 3.0 -1
MocTposH Ha cakTe yoboru

5 -0 -15 -10 03 0 03

A

First graph, where we create first population for function.

[=]
>

[=]
=]

Ln

i
[FE]
(=]

i
[
L

_—
=3.3

S50 45 40 3.0 -1
MocTposH Ha cakTe yoboru

5 -0 -15 -10 03 0

A

Second graph, middle population(between first and last). We can see,

some chromosomes stay near minimum of function.

that already

[=]
>

[=]
=]

A

i
i
= in

i
[
L

50 4% 40 35 30 25 20 -lLE -l D3 0 05 10 15 20 25 30 35 40 435 350

.
MocTposH Ha cakTe yoboru

Third graph(Last population from iterations). We can see, almost all chromosomes
stay on minimum of function.

