
Task 1

Average vs generation graph.

Source code:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class MainTask1
{
 static Random random = new Random(System.currentTimeMillis());

 static class Chromosome
 {
 double[] genes;
 public Chromosome()
 {
 genes = new double[20];
 for(int i = 0; i < 20; i++)
 genes[i] = random.nextDouble() * 2 - 1;
 }
 double getFitness()
 {
 double y = 20;
 for(int i = 0; i < 20; i++)
 y += genes[i] * genes[i] - Math.cos(2 * Math.PI * genes[i]);
 return y;
 }
 }

 static class Generation
 {
 Chromosome[] chromosomes;
 public Generation()
 {
 chromosomes = new Chromosome[20];
 for(int i = 0; i < 20; i++)
 chromosomes[i] = new Chromosome();
 }
 double getAverageFitness()
 {
 double counter = 0;
 for(Chromosome i : chromosomes)
 counter += i.getFitness();
 return counter / 20;
 }
 void sort()
 {
 Arrays.sort(chromosomes, (o1, o2) ->
 {
 double o1fit = o1.getFitness();
 double o2fit = o2.getFitness();
 if(o1fit < o2fit)
 return -1;
 else if(o1fit > o2fit)
 return 1;
 else
 return 0;
 });
 }
 Chromosome[] get2RandomChromosomes()
 {
 Chromosome[] random2 = new Chromosome[2];

 random2[0] = chromosomes[random.nextInt(10)];
 random2[1] = chromosomes[random.nextInt(10)];

 return random2;
 }

 Chromosome getBestChromosome()
 {
 return chromosomes[0];
 }

 }

 static Chromosome crossover(Chromosome first, Chromosome second)
 {
 int crossoverPoint = random.nextInt(first.genes.length);

 Chromosome child = new Chromosome();

 System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);
 System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint,
 second.genes.length - crossoverPoint);

 /*Mutation block*/

 if(random.nextInt(20) == 13) { int pos = random.nextInt(child.genes.length); if(child.genes[pos] == 0) child.genes[pos] = 1; else child.genes[pos] = 0; } return child; } static ArrayList<Double> fitnessHistory; static boolean isLastGenerationUnchanged() { double tmp = fitnessHistory.get(fitnessHistory.size() - 1); if(tmp == 0.0) return true; if(fitnessHistory.size() <= 124) return false; for(int i = 0; i < 124; i++) if(fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp) return false; return true; } public static void main(String[] args) throws InterruptedException
 { ArrayList<Generation> generations = new ArrayList<>(); generations.add(new Generation());
 generations.get(0).sort(); fitnessHistory = new ArrayList<>();
 fitnessHistory.add(generations.get(0).getAverageFitness()); System.out.println(String.format("%d\t\t%.4f\t\t%.4f", 0, generations.get(0).getAverageFitness(), generations.get(0).getBestChromosome().getFitness())); for(int i = 1; ; i++) { Generation newGeneration = new Generation(); for(int j = 0; j < newGeneration.chromosomes.length; j++) { Chromosome[] random2 = generations.get(generations.size() - 1).get2RandomChromosomes(); newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);
 } newGeneration.sort(); generations.add(newGeneration); generations.remove(0); fitnessHistory.add(newGeneration.getAverageFitness()); System.out.println(String.format("%d\t\t%.4f\t\t%.4f", i, newGeneration.getAverageFitness(), newGeneration.getBestChromosome().getFitness())); if(isLastGenerationUnchanged()) break; } Thread.sleep(1000); } }

Task 2

Generation 0 graph.

Generation 2 graph.

Generation 4 graph.

Generation 4 graph.

Generation 20 graph.

Average vs generation graph.

Source code:
import java.util.ArrayList; import java.util.Arrays; import java.util.Random; public class MainTask2 { static Random random = new Random(System.currentTimeMillis());
 static class Chromosome
 { double[] genes; public Chromosome()
 { genes = new double[11]; for(int i = 0; i < 11; i++) genes[i] = random.nextInt(2); } double getFitness() { double x = 0; for(int i = 1; i < 11; i++) if(genes[i] == 1)
 x += Math.pow(2, i - 1); x/=1023; if(genes[0] == 0) x *= -1; return 1 + (x * x - Math.cos(Math.PI * 2 * x));
 } } static class Generation { Chromosome[] chromosomes; public Generation()
 { chromosomes = new Chromosome[20]; for(int i = 0; i < 20; i++) chromosomes[i] = new Chromosome(); } double getAverageFitness() { double counter = 0; for(Chromosome i : chromosomes) counter += i.getFitness(); return counter / 20; } void sort()
 { Arrays.sort(chromosomes, (o1, o2) ->
 { double o1fit = o1.getFitness(); double o2fit = o2.getFitness(); if(o1fit < o2fit) return -1; else if(o1fit > o2fit) return 1; else return 0; }); } Chromosome[] get2RandomChromosomes() { Chromosome[] random2 = new Chromosome[2]; random2[0] = chromosomes[random.nextInt(10)];

 random2[1] = chromosomes[random.nextInt(10)]; return random2; } Chromosome getBestChromosome() { return chromosomes[0]; } } static Chromosome crossover(Chromosome first, Chromosome second) { int crossoverPoint = random.nextInt(first.genes.length); Chromosome child = new Chromosome();
 System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint); System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint, second.genes.length - crossoverPoint); if(random.nextInt(20) == 13) { int pos = random.nextInt(child.genes.length); if(child.genes[pos] == 0) child.genes[pos] = 1; else child.genes[pos] = 0;
 } return child; } static ArrayList<Double> fitnessHistory; static boolean isLastGenerationUnchanged()
 { double tmp = fitnessHistory.get(fitnessHistory.size() - 1); if(tmp == 0.0) return true; if(fitnessHistory.size() <= 100) return false; for(int i = 0; i < 100; i++) if(fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp) return false; return true;
 } public static void main(String[] args) { ArrayList<Generation> generations = new ArrayList<>(); generations.add(new Generation());
 generations.get(0).sort(); fitnessHistory = new ArrayList<>(); fitnessHistory.add(generations.get(0).getAverageFitness()); System.out.println(String.format("%d\t\t%.4f\t\t%.4f", 0, generations.get(0).getAverageFitness(), generations.get(0).getBestChromosome().getFitness())); for(int i = 1; ; i++)
 { Generation newGeneration = new Generation(); for(int j = 0; j < newGeneration.chromosomes.length; j++) { Chromosome[] random2 = generations.get(generations.size() -

1).get2RandomChromosomes(); newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);
 } newGeneration.sort(); generations.add(newGeneration); generations.remove(0); fitnessHistory.add(newGeneration.getAverageFitness()); System.out.println(String.format("%d\t\t%.4f\t\t%.4f", i, newGeneration.getAverageFitness(), newGeneration.getBestChromosome().getFitness())); if(isLastGenerationUnchanged()) break; } } }

