Task 1

Avera; -ﬁ“:tthmsll\hit

BestWithoutMut

Avera 'f\\(\thl\{ul

BeastWithMut

p——

‘ \ Generation
. 14 . T

T al g T T T T T T T T T T T T T or

L L
3 10 13 20 23 30 33 0 45 30 33 60 63 0 73 80 85 90 93 100 103 110 13 120 125 30 133

Average vs generation graph.

Source code:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class MainTaskl

{

static Random random = new Random (System.currentTimeMillis());

static class Chromosome

{
double[] genes;
public Chromosome ()
{
genes = new double[20];
for(int i = 0; i < 20; i++)
genes|[i] = random.nextDouble() * 2 - 1;
}
double getFitness|()
{
double y = 20;
for(int i = 0; i < 20; i++)

y += genes|[i]
return vy;

* genes[i] - Math.cos(2 * Math.PI * genes[i]);

140

145

»

static class Generation

{

Chromosome [] chromosomes;
public Generation()
{
chromosomes = new Chromosome[20];
for(int i = 0; i < 20; i++)
chromosomes[i] = new Chromosome () ;
}
double getAverageFitness|()
{
double counter = 0;
for (Chromosome i : chromosomes)
counter += i.getFitness|();
return counter / 20;
}
void sort()
{
Arrays.sort (chromosomes, (ol, 02) ->
{
double olfit = ol.getFitness();
double 02fit = o2.getFitness();
if(olfit < o2fit)
return -1;
else if(olfit > o2fit)
return 1;
else
return 0;
1)
}
Chromosome [] get2RandomChromosomes ()
{

Chromosome|[] random?2 = new Chromosome[2];

random?2 [0]
random?2 [1]

chromosomes [random.nextInt (10)];
chromosomes [random.nextInt (10)];

return random2;

Chromosome getBestChromosome ()
{

return chromosomes|[0];

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt (first.genes.length);

Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);
System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,

second.genes.length - crossoverPoint);

/*Mutation block*/

1f(random.nextInt (20) == 13)
{

int pos = random.nextInt (child.genes.length);

if(child.genes[pos] == 0
child.genes[pos] = 1;
else

child.genes([pos] = 0;

return child;

}

static Arraylist<Double> fitnessHistory;
static boolean isLastGenerationUnchanged/()

{
double tmp = fitnessHistory.get(fitnessHistory.size() - 1);

if (tmp == 0.0)
return true;
if(fitnessHistory.size () <= 124)
return false;
for(int i = 0; 1 < 124; i++)
if (fitnessHistory.get(fitnessHistory.size() - 1 - 1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException
{
ArrayList<Generation> generations = new ArrayList<>();
generations.add (new Generation());
generations.get (0) .sort () ;
fitnessHistory = new ArrayList<>();
fitnessHistory.add(generations.get (0) .getAverageFitness())
System.out.println (String. format ("%$d\t\t%.4£\t\t%.4£", O,

generations.get (0) .getAverageFitness (),
generations.get (0) .getBestChromosome () .getFitness()));

for(int i = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)

{

Chromosome[] random2 = generations.get (generations.size ()

1) .get2RandomChromosomes () ;
newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);

}

newGeneration.sort () ;

generations.add (newGeneration) ;

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness ());
System.out.println (String. format ("$d\t\t%.4£\t\t%.4£f", 1,

newGeneration.getAverageFitness(),
newGeneration.getBestChromosome () .getFitness ()));

if (isLastGenerationUnchanged())
break;

}

Thread.sleep(1000) ;

fix)FElHx"2 - cos(2%3.14%x))

G—ariratim 0 ® ®

WFH

[

04 0.6 0.3

Generation 0 graph.

flx)FElHx"2 - cos(2%3.14%x))

Gararatinfn 2 ® &

"FH

Generation 2 graph.

fix)=1+(x"2 - cos(2%3.14%x))

Ga‘iratiu-n 4 ® &

X
| | | |] |] | b
1 | | | I I I] F
-1 0.8 0.6 04 04 0.6 0.3 1
Generation 4 graph.
FY y
fAx)=1Hx"2 - cos(2%3.14%=x))
Gariraticmﬁ ® ®
X
1 L 1 L Il L L ™
L

Generation 4 graph.

=]
=3
=
(=]
-1

fix}=lHx"2 - cos(2*3 14%x))

Gariratiun Iﬂ. ®
X
1 1 1 1 1 1 1 ™
I I I I I I I L
-1 0.8 0.6 04 04 0.6 0.8 1
Generation 20 graph.
“+ Fitness
1.4
12
1_
0.8+ AverazeWithhut
BestWithhut
061
04+
024
eneration
N | i, - |
2 4 3] 10 12 14 16 18 20

Average vs generation graph.

Source code:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class MainTask2
{

static Random random = new Random (System.currentTimeMillis());

static class Chromosome
{
double[] genes;
public Chromosome ()
{
genes = new double[1l1l];
for(int i = 0; 1 < 11; i++)
genes|[i] = random.nextInt (2);
}
double getFitness|()
{
double x = 0;
for(int i = 1; 1 < 11; i++)
if (genes[i] == 1)
x += Math.pow(2, 1 - 1);

x/=1023;
if (genes[0] == 0)
x *= -1;

return 1 + (x * x - Math.cos(Math.PI * 2 * x));
}

static class Generation

{
Chromosome [] chromosomes;
public Generation()
{

chromosomes = new Chromosome[20];
for(int i = 0; 1 < 20; i++)
chromosomes[i] = new Chromosome () ;

}
double getAverageFitness|()
{
double counter = 0;
for (Chromosome i : chromosomes)
counter += i.getFitness|();
return counter / 20;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, o02) ->
{
double olfit = ol.getFitness();
double 02fit = o2.getFitness();
if(olfit < o2fit)
return -1;
else if (olfit > o02fit)
return 1;
else
return 0;
P
}
Chromosome [] get2RandomChromosomes ()
{
Chromosome|[] random?2 = new Chromosome[2];

random2 [0] = chromosomes|[random.nextInt (10)];

random2 [1] = chromosomes|[random.nextInt (10)];

return random2;
}

Chromosome getBestChromosome ()
{
return chromosomes|[0];

}
}

static Chromosome crossover (Chromosome first, Chromosome second)
{

int crossoverPoint = random.nextInt (first.genes.length) ;

Chromosome child = new Chromosome () ;
System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint);

if (random.nextInt (20) == 13)
{
int pos = random.nextInt (child.genes.length) ;
if (child.genes|[pos] == 0)
child.genes[pos] = 1;
else

child.genes [pos] 0;

return child;

}

static ArraylList<Double> fitnessHistory;
static boolean isLastGenerationUnchanged/ ()
{
double tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if (tmp == 0.0)
return true;
if(fitnessHistory.size () <= 100)
return false;
for(int i = 0; 1 < 100; i++)
if (fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp)
return false;
return true;

public static void main (String[] args)

{
ArrayList<Generation> generations = new ArrayList<>();
generations.add (new Generation());
generations.get (0) .sort () ;
fitnessHistory = new ArrayList<>();
fitnessHistory.add(generations.get (0) .getAverageFitness())
System.out.println(String. format ("$d\t\t%.4£\t\t%.4£", O,

generations.get (0) .getAverageFitness (),

generations.get (0) .getBestChromosome () .getFitness()));

for(int i = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)

{

Chromosome[] random2 = generations.get (generations.size() -

1) .get2RandomChromosomes () ;
newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);

}

newGeneration.sort () ;
generations.add (newGeneration) ;

generations.remove (0) ;
fitnessHistory.add (newGeneration.getAverageFitness ());

System.out.println (String. format ("$d\t\t%.4£\t\t%.4£", 1,

newGeneration.getAverageFitness(),
newGeneration.getBestChromosome () .getFitness ()));

if (isLastGenerationUnchanged())
break;

