2-1gor Kondrashuk

Minimization of Test Function

High-dimensional Test Function
Problem is minimize or maximize a n-dimensinal function
y = f(X1; X2; X35+ * * 5 Xn)

For example, minimize

y = X%+ X+ Xt -+ x%0

Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Zni=1(x2i— Acos(2_xi))

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Taskl
Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

class Dot
{
public List<double> chromosomes;
public double fitness;
public Dot(List<double> chromosomes)
{
this.chromosomes = chromosomes;
fitness = getFitness(chromosomes);

private double getFitness(List<double> chromosomes)

double fitness = chromosomes.Count;
for (int i=0;i<chromosomes.Count;i++)

double temp = chromosomes[i]* chromosomes[i] - Math.Cos(2 * Math.PI * chromosomes[i]);
fitness += temp;
}
return fitness;
}
}
}

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

class Population

{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;



public Population(List<Dot> dogs)

{
this.dots = dogs;
theBestFitness = getTheBestFitness(dogs);
avarageFitness = getAvarageFitness(dogs);

}
public double getTheBestFitness(List<Dot> dogs)

double bestFitness = 9999;
for (inti =0; i < dogs.Count; i++)
if (bestFitness > dogsli].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;

}
public double getAvarageFitness(List<Dot> dogs)

double avarageFitness = 0;
for (inti =0; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;
}
}

}

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_
class GA

Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random();
List<Dot> dots = new List<Dot>();
for (inti =0;i<20; i++)
{
List<double> chromosomes = new List<double>();
for (intj = 0; j < 20; j++)

chromosomes.Add(random.NextDouble() % 2 -1);
dots.Add(new Dot(chromosomes));

//Sorting by fitness
for (inti = 0; i < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)

if (dots[j].fitness > dots[j - 1].fitness)

Dot tempDot = dots][j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;
}
}
}

Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);
intk=0;

while (tisReady(historyOfPopulation))



Thread.Sleep(10);
historyOfPopulation.Add(getNextPupulation(historyOfPopulation[K]));
k++;
}
}

private Population getNextPupulation(Population parentPopulation)

{

List<Dot> childrenPopulationDots = new List<Dot>();
for (inti=0;i<10; i++)

List<Dot> childrenDots = getChildren(
parentPopulation.dots[random.Next() % 10 + 10],
parentPopulation.dots[random.Next() % 10 + 10]
)i

childrenPopulationDots.AddRange(childrenDots);

}
//Sorting by fitness
for (int i = 0; i < childrenPopulationDots.Count; i++)

{
for (int j = childrenPopulationDots.Count - 1; j > i; j--)

if (childrenPopulationDots[j].fitness > childrenPopulationDots][j - 1].fitness)
{
Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}
Population childrenPopulation = new Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> historyOfPopulation)

if (historyOfPopulation.Count < 100)
return false;
else

for (int i = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)

if (historyOfPopulation[historyOfPopulation.Count - 100].avarageFitness != historyOfPopulation[i].avarageFitness)
return false;
}

return true;

}

}

private List<Dot> getChildren(Dot father, Dot mother)

{
List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%20;
List<double> firstChromosomes = new List<double>();
List<double> secondChromosomes = new List<double>();
for (intj = 0; j < 20; j++)

if(j<pointCross)

firstChromosomes.Add(father.chromosomes[j]);
secondChromosomes.Add(mother.chromosomes[j]);

}

else

firstChromosomes.Add(mother.chromosomes|j]);
secondChromosomes.Add(father.chromosomes[j]);

}
b

childrenDots.Add(new Dot(firstChromosomes));



childrenDots.Add(new Dot(secondChromosomes));

/[Mutation
for (int j = 0; j < childrenDots.Count; j++)

int prob = random.Next(0, 20);
if (prob ==7)
{

int number = random.Next(20);

childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;

return childrenDots;

}
}
}

25

20

Aver
———————
Best

AverWithoutMutation
B e

BestWithoutMutation

Best fitness with mutation equal 0;

Best fitness without mutation equal 11,32;

Task2
Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.

y = nA +Zni=1(x2i— Acos(2_xi))

Where A and n equal 1;

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_



class Dot
{
public List<double> chromosomes;
public double fitness;
public Dot(List<double> chromosomes)
{
this.chromosomes = chromosomes;
fitness = getFitness(chromosomes);

private double getFitness(List<double> chromosomes)

double fitness = chromosomes.Count;
double x=0;
for (inti = 1; i < chromosomes.Count; i++)

if (chromosomes[i] == 1)

X += Math.Pow(2, i - 1);

X [=1023;
if (chromosomes[0] == 0)

X *=-1;
return 1 + (X * x - Math.Cos(Math.PI * 2 * x));

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_
{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness(dogs);
avarageFitness = getAvarageFitness(dogs);

}
public double getTheBestFitness(List<Dot> dogs)

double bestFitness = 9999;
for (inti = 0; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;

public double getAvarageFitness(List<Dot> dogs)
{
double avarageFitness = 0;
for (inti = 0; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;
}
}
}
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;
using System.Threading.Tasks;



namespace lab3_siit_

{
class GA

Random random;

List<Population> historyOfPopulation;

public GA()

{
random = new Random();
List<Dot> dots = new List<Dot>();
for (inti=0;i<20; i++)

List<double> chromosomes = new List<double>();
for (intj =0; j <11;j++)

chromosomes.Add(random.Next() % 2);

dots.Add(new Dot(chromosomes));
}
//Sorting by fitness
for (inti = 0; i < dots.Count; i++)

for (intj = dots.Count - 1; j > i; j--)
if (dots[j].fitness > dots[j - 1].fitness)

Dot tempDot = dots][j];

dots[j] = dots[j - 1];

dots[j - 1] = tempDot;

}
}

}
Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);
intk=0;
while (tisReady(historyOfPopulation))

Thread.Sleep(10);
historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
k++;
}
}
private Population getNextPupulation(Population parentPopulation)

{

List<Dot> childrenPopulationDots = new List<Dot>();

for (inti =0;i<10; i++)
{

List<Dot> childrenDots = getChildren(
parentPopulation.dots[random.Next() % 10 + 10],
parentPopulation.dots[random.Next() % 10 + 10]
)i

childrenPopulationDots.AddRange(childrenDots);

}
//Sorting by fitness

for (inti = 0; i < childrenPopulationDots.Count; i++)
for (int j = childrenPopulationDots.Count - 1; j > i; j--)
if (childrenPopulationDots[j].fitness > childrenPopulationDots[j - 1].fitness)
Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}

Population childrenPopulation = new Population(childrenPopulationDots);



return childrenPopulation;

}
Boolean isReady(List<Population> historyOfPopulation)

if (historyOfPopulation.Count < 100)
return false;
else

for (int i = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)

if (historyOfPopulation[historyOfPopulation.Count - 100].avarageFitness != historyOfPopulation[i].avarageFitness)
return false;
}

return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{
List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%620;
List<double> firstChromosomes = new List<double>();

List<double> secondChromosomes = new List<double>();
for (intj =0;j < 11;j++)

if(j<pointCross)

firstChromosomes.Add(father.chromosomes[j]);
secondChromosomes.Add(mother.chromosomeslj]);
}
else
{
firstChromosomes.Add(mother.chromosomes|j]);
secondChromosomes.Add(father.chromosomes[j]);
}
}

/[Mutation
for (int j = 0; j < childrenDots.Count; j++)

int prob = random.Next(0, 20);
if (prob ==7)
{

int number = random.Next(20);
childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;
}
}

childrenDots.Add(new Dot(firstChromosomes));
childrenDots.Add(new Dot(secondChromosomes));
return childrenDots;



Aver

PS
W L]
Floe
%
= n
¥ T
by
&
¥
Bl e
?
Ial +4a
¥
"~ 0| e
El & i B
" R -
M
+9
+a
42
=3
45
42
=
4
=
L0
<
+2
42
=3
14
K]
=3
+=
4
=
42
4o
+0 =]
Ja
-+ <
4o TS
4

1 generation

5 generation



-~
0.184

0.161

0144

0121

011

0.081

0.041

0.024

-

f(x)=1+(x"2-cos(2*3.14*x))

i i i i i i i i
009 008 007 006 005 004 003 002 001

0.021

0041

10 generation
0189
0:16

014+
0.1
0.08+

0.06

0.024

0s(2*3.14*x))

: ! , ! i ! | ,
009 008 007 006 005 004 003 002 -001

0.02

0.04

15 generation

-

0.081

0071

0051

0.041

0024+

0011

f(x)=1Hx"2-cos(2*3.14*x))

Pazd
. . .

0014




20 generation

-

(x)=1+(x"2-cos(2#3.14*x))

0.081

0074

0041

0.031

0021

0011

004 0035 003 005 002 0015 001 0005 0005 001 0015 002 0025 003 0035 004 0045 005 0055 006 0063

00114




