2-1lya Babich

Minimization of Test Function

High-dimensional Test Function
Problem is minimize or maximize a n-dimensional function
y = f(xa; x2; X3; + -+ ; Xn)
We may use chromosomes with n genes of real value, such as
(0:32;-0:51; 0:48; - - - ;—-0:93)
For example, minimize

y = X214 X2+ X2+ -+ X0
Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Zni=1(x2i- Acos(2_xi))
2. Show the following graphics in each of 3 cases (i), (ii) and (iii).
(1) the graph of _tness vs generation.
(2) Create a population of 20 chromosomes at random, with _tness being y.

Taskl

Source code

using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;

namespace lab3 siit

{

class Dot

{

using
using
using
using
using

public List<double> chromo;
public double fit;
public Dot (List<double> chromo)
{
this.chromo = chromo;
fit = getFit (chromo);
}
private double getFit (List<double> chromo)
{
double fit = chromo.Count;
for (int 1i=0;i<chromo.Count;i++)
{
double temp = chromo[i]* chromo[i]
fit += temp;
}

return fit;

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;

namespace lab3 siit

{

class Population

{

public List<Dot> dots;

public double theBestFit;

public double avarageFit;

public Population(List<Dot> dogs)

- Math.Cos (2 * Math.PI * chromo[i]);



this.dots = dogs;
theBestFit = getTheBestFit (dogs);
avarageFit = getAvarageFit (dogs);
}
public double getTheBestFit (List<Dot> dogs)
{
double bestFit = 9999;
for (int 1 = 0; < dogs.Count; i++)
if (bestFit dogs[i].fit)
bestFit = dogs([i].fit;
return bestFit;

Vo

}
public double getAvarageFit (List<Dot> dogs)
{
double avarageFit = 0;
for (int 1 = 0; i < dogs.Count; i++)
avarageFit += dogs[i].fit;
avarageFit /= dogs.Count;
return avarageFit;

}
}
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3 siit
{
class GA
{
Random random;
List<Population> histor;
public GA()
{
random = new Random() ;
List<Dot> dots = new List<Dot>();
for (int 1 = 0; 1 < 20; 1i++)
{
List<double> chromo = new List<double>();
for (int j = 0; j < 20; J++)
{
chromo.Add (random.NextDouble () % 2 -1);
}
dots.Add (new Dot (chromo)) ;
}
//Sorting by fit
for (int i = 0; i1 < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fit > dots[j - 1].fit)
{
Dot tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}

Population startPopulation = new Population(dots);

histor = new List<Population>();

histor.Add (startPopulation);

int k = 0;

while (!isReady (histor))

{
Thread.Sleep(10);
histor.Add (getNextPupulation (histor([k]));
k++;

}

}

private Population getNextPupulation (Population parent)



List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; 1i++)
{

List<Dot> childrenDots = getChildren (
parent.dots[random.Next () % 10 + 10],
parent.dots[random.Next () 10 + 10]

)
childrenPopulationDots.AddRange (childrenDots) ;

o©

}

//Sorting by fit

for (int i = 0; i < childrenPopulationDots.Count; i++)

{
for (int j = childrenPopulationDots.Count - 1; j > 1i; j--)
{

if (childrenPopulationDots([j].fit > childrenPopulationDots[j - 1].fit)

{
Dot tempDot = childrenPopulationDots[]j];
childrenPopulationDots[]j] = childrenPopulationDots[]j - 1];
childrenPopulationDots[j - 1] = tempDot;

}
}
Population childrenPopulation = new Population(childrenPopulationDots) ;
return childrenPopulation;

}

Boolean isReady(List<Population> histor)
{
if (histor.Count < 100)
return false;
else
{
for (int i = histor.Count - 100; 1 < histor.Count; i++)
{
if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)
return false;
}
return true;
}
}
private List<Dot> getChildren (Dot father, Dot mother)
{
List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next ()%20;
List<double> firstChromo = new List<double>();
List<double> secondChromo = new List<double>();
for (int j = 0; j < 20; J++)
{
if (j<pointCross)
{
)

firstChromo.Add (father.chromo[7j]
[31)7

secondChromo.Add (mother.chromo
}
else
{
firstChromo.Add (mother.chromo[j]) ;
secondChromo.Add (father.chromo[j]) ;

}

childrenDots.Add (new Dot (firstChromo)) ;
childrenDots.Add (new Dot (secondChromo)) ;

//Mutation
for (int j = 0; j < childrenDots.Count; j++)
{
int prob = random.Next (0, 20);
if (prob == 7)
{
int number = random.Next (20);
childrenDots[]j].chromo[number] = random.NextDouble() % 2 - 1;



}

return childrenDots;

-

Best and
averege fitness
without
mutation =
11,32;

Averege With Mutation
B e
Bast With Mutation
Aversge Without Mutation

Best Without Mutation
—_——————————

Best fitness with mutation=0;
Average fitness with mutation=0;
b

Best fitness with mutation equal O;

Best fitness without mutation equal 11,32;

Task2

Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Zni=1(x2i- Acos(2_xi))

Where A and n equal 1;

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
class Dot
{
public List<double> chrom;
public double fitness;
public Dot (List<double> chrom)
{
this.chrom = chrom;
fitness = getFitness (chrom);
}
private double getFitness (List<double> chrom)
{

double fitness = chrom.Count;

A roey el &
130 140 130 160

L



double x=0;
for (int 1 = 1; 1 < chrom.Count; i++)
if (chrom[i] == 1)
X += Math.Pow(2, i - 1);

x /= 1023;
if (chrom[0] == 0)
x *= -1;

return 1 + (X * x - Math.Cos(Math.PI * 2 * x));

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness (dogs) ;
avarageFitness = getAvarageFitness (dogs) ;
}
public double getTheBestFitness (List<Dot> dogs)
{
double bestFitness = 9999;

for (int 1 = 0; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;

return bestFitness;
}
public double getAvarageFitness (List<Dot> dogs)
{
double avarageFitness = 0;
for (int 1 = 0; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;

}
}
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3 siit
{
class GA
{
Random random;
List<Population> history;
public GA()
{
random = new Random() ;
List<Dot> dots = new List<Dot>();
for (int i = 0; 1 < 20; 1i++)
{
List<double> chrom = new List<double>();
for (int j = 0; j < 11; j++)
{
chrom.Add (random.Next () % 2);
}
dots.Add (new Dot (chrom)) ;



}
//Sorting by fitness

for (int i1 = 0; 1 < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1l].fitness)
{
Dot tempDot = dots[]j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}
Population start = new Population (dots);
history new List<Population>();
history.Add (start);
int k = 0;
while (!isReady (history))
{

Thread.Sleep(10);
history.Add (getNextPupulation (history([k])):

k++;
}
}

{

List<Dot> childrenDots = new List<Dot>();

for (int 1 0; 1 < 10; 1i++)

{

List<Dot> childrenDots getChildren (
parentPopulation.dots[random.Next () % 10 + 10],
parentPopulation.dots[random.Next () % 10 + 10]
)

childrenDots.AddRange (childrenDots) ;

}
//Sorting by fitness

for (int 1 = 0; 1 < childrenDots.Count; i++)
{
for (int j = childrenDots.Count - 1; 3 > i; j--)
{
if (childrenDots[j].fitness > childrenDots[]j -

{
childrenDots[j];

childrenDots[] -
- 1] tempDot;

Dot tempDot =
childrenDots[]]
childrenDots|[]j

1]1;

}
}

Population childrenPopulation
return childrenPopulation;

}

Boolean isReady (List<Population> history)

{

if (history.Count < 100)
return false;
else
{
for (int i = history.Count - 100; i < history.Count;
{
if (historylhistory.Count - 100].avarageFitness

return false;
}
return true;
}

}
private List<Dot> getChildren (Dot father,

{

Dot mother)

List<Dot> childrenDots = new List<Dot>();

int pointCross = random.Next ()$%20;
List<double> firstChrom new List<double>();
List<double> secondChrom = new List<double>();

private Population getNextPupulation (Population parentPopulation)

1].fitness)

new Population (childrenDots) ;

i++)

!= history[i].avarageFitness)



for (int j = 0; j < 11; J++)

{
if (j<pointCross)

{

firstChrom.Add (father.chrom|[j
secondChrom.Add (mother.chrom|[

}

else

{

1)
1)

firstChrom.Add (mother.chrom[j]);
secondChrom.Add (father.chrom([j])

}

//Mutation

for (int j = 0; j < childrenDots.Count;

{

int prob = random.Next (0, 20);

if (prob == 7)
{

int number =

random.Next (20) ;

childrenDots[]j].chrom[number] =

}

childrenDots.Add (new
childrenDots.Add (new
return childrenDots;

Dot (firstChrom)) ;
Dot (secondChrom) ) ;

-

’

344)

random.NextDouble ()

0 Generation

fa)=1+(x"2-c0s(2#3. 14%x))

Series 1
0 . .

051




¥ f(x)=1Hx"2-cos(2%3.14%x))

. Series 2
045 5 Generation i

04t

0314

014

0054

=1

&1

‘
018 016 014 012 D1 008 006 004 002

0051
014

0154




¥
0061
10 Generation
005t
004t
0034
0024
oo
X
003 0,023 002 0013 001 0,005 0.005 0.01 0.013 0.02 0.023 0.03 0.035 004
2014
a0t
203t
o0t
F -
¥ =1+ 2-c05(293.14%x))
15 Generation Serigs 4 .
0.024
0.0154
0014
0.0051
- x
) } } } } } f i 4 } t f i f t t t t ¥
001 0009 0008 0007 0006 0005 0004 0003 0002 -0.001 0001 0002 0003 0004 0005 0006 0007 0008 0.000
00051
D014
00154




20 Generation

-~
0006 ~
0.005
0.0044
00031
0.002

0001

Baries 5
- - -

00033

0,005

20,0045

0.004

0.0033

0.003

20,0025

0.002

A
00015

A
0.001

,
0.0005

-0.0014

00024

-0.0031

-0.0044

00051

-0.0061

-

, A A
0.0005 0.001 0.0015 0.002 0.0025 0.003



