Contemporary Intelligent Intellectual Technology (CIIT)
Kirill Zabrodsky 11-11
Task Nel (20-D version of Rastrigin’s Function)

The task is to minimise y = 204 + Y22, (xl2 - Acos(Zrtxi)) in the following way:

(1) Represent each of xi(i =1, - - -, 20) by a chromosome with 20 genes.
(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change

Source code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit

{

class Dot

{
public List<double> chromosomes;
public double fitness;
public Dot(List<double> chromosomes)

{
this.chromosomes = chromosomes;
fitness = getFitness(chromosomes);
}
private double getFitness(List<double> chromosomes)
{

double fitness = chromosomes.Count;
for (int i=0;i<chromosomes.Count;i++)

{
double temp = chromosomes[i]* chromosomes[i] -
Math.Cos(2 * Math.PI * chromosomes[i]);
fitness += temp;

}

return fitness;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;



namespace lab3 siit

{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness(dogs);
avarageFitness = getAvarageFitness(dogs);
}
public double getTheBestFitness(List<Dot> dogs)
{
double bestFitness = 9999;
for (int 1 = @; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;
}
public double getAvarageFitness(List<Dot> dogs)
{
double avarageFitness = 0;
for (int 1 = @; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;
}
}
}

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3 siit

{
class GA

{
Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random();
List<Dot> dots = new List<Dot>();
for (int 1 = @; i < 20; i++)
{

List<double> chromosomes = new List<double>();



for (int j = @; j < 20; j++)
{

¥

dots.Add(new Dot(chromosomes));

chromosomes.Add(random.NextDouble() % 2 -1);

}
//Sorting by fitness

for (int 1 = @; i < dots.Count; i++)

{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1].fitness)
{
Dot tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;
}
}
}

Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);

int k = 0;
while (!isReady(historyOfPopulation))
{

Thread.Sleep(10);

historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
k++;
}
}

private Population getNextPupulation(Population
parentPopulation)

{

List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; i++)

{

List<Dot> childrenDots = getChildren(
parentPopulation.dots[random.Next() % 10 + 10],
parentPopulation.dots[random.Next() % 10 + 10]
)s

childrenPopulationDots.AddRange(childrenDots);

}

//Sorting by fitness
for (int 1 = @; i < childrenPopulationDots.Count; i++)
{
for (int j = childrenPopulationDots.Count - 1; j > i;
j--)
{



if (childrenPopulationDots[j].fitness >
childrenPopulationDots[j - 1].fitness)
{
Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] =
childrenPopulationDots[]j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}

Population childrenPopulation = new
Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> historyOfPopulation)
{
if (historyOfPopulation.Count < 100)
return false;
else
{
for (int i = historyOfPopulation.Count - 100; i <
historyOfPopulation.Count; i++)
{
if (historyOfPopulation[historyOfPopulation.Count
- 100].avarageFitness != historyOfPopulation[i].avarageFitness)
return false;

}
return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{

List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%20;
List<double> firstChromosomes = new List<double>();
List<double> secondChromosomes = new List<double>();
for (int j = 0; j < 20; j++)
{
if(j<pointCross)
{
firstChromosomes.Add(father.chromosomes[j]);
secondChromosomes.Add(mother.chromosomes[j]);

}
else
{
firstChromosomes.Add(mother.chromosomes[j]);
secondChromosomes.Add(father.chromosomes[j]);
}



childrenDots.Add(new Dot (firstChromosomes));
childrenDots.Add(new Dot(secondChromosomes));

//Mutation
for (int j = @; j < childrenDots.Count; j++)
{

int prob = random.Next(e, 20);

if (prob == 7)

{

int number = random.Next(20);
childrenDots[j].chromosomes[number] =
random.NextDouble() % 2 - 1;

}
}

return childrenDots;

The graph of fitness vs generation:

4y

\:7 \-_LY_\

t y t u t y t t t t t f t t t f t f t t t t
0 15 2 25 30 35 40 45 S0 55 6 6 70 75 8 8 9% 9 100 105 10 115

Best fithess with mutation is O;
Best fitness without mutation is
Task #2 (3-D Rastrigin’s Function)

120 125

+ —
130 133

The task is to minimise y = 204 + 2%, (xl2 - Acos(ani)) in the following way:

(1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness doesn’t change.




241

Hx)=1+(x"2-cos(2*3.14%x))
1

0 generation

0.16

0.144

012

0:14

0.08+

0.044

0.02+

“

Hx)=1+(x"2-cos(2*3.14%x))

2
. . .

i i ; ; i ;
014 013 012 011 01 009 008 007 006 005 -004

5t generation

T
-0.03

002 001

<0.02+

<0.04+

-0.06+




X fx)=1+(x"2-cos(2*3.14%x))
02 # % . .

0:15
0:1
0.05+

X

t + t t } + t t t } t } t t t »

-0.18 -0.16 0.14 012 0.1 -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0.1 0.12

<0.05

0.1
th i
10" generation
o
y fx)=1+(x"2-cos(2*3.14%x))
021 o . .
0.151
0.1
0.051
X
t + t t t + t + t } + } } t t »
018 016 014 012 01 008 006 004 002 0.02 0.04 0.06 0.08 01 012
0.051

0.1

15" generation



0.054

0.04

0.034

0.014

Hx)=1+(x"2-cos(2*3.14%x))

20t generation

T
-0.02

i
20015

T
-0.01

-0.005

<0.014

<0.02+




