Contemporary Intelligent Intellectual Technology (CIIT)
Kirill Zabrodsky 11-11
Task Nel (20-D version of Rastrigin’s Function)

The task is to minimise y = 204 + Y22, (xl2 - Acos(Zrtxi)) in the following way:

(1) Represent each of xi(i =1, - - -, 20) by a chromosome with 20 genes.
(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change

Source code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit

{

class Dot

{
public List<double> chromosomes;
public double fitness;
public Dot(List<double> chromosomes)

{
this.chromosomes = chromosomes;
fitness = getFitness(chromosomes);
}
private double getFitness(List<double> chromosomes)
{

double fitness = chromosomes.Count;
for (int i=0;i<chromosomes.Count;i++)

{
double temp = chromosomes[i]* chromosomes[i] -
Math.Cos(2 * Math.PI * chromosomes[i]);
fitness += temp;

}

return fitness;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;



namespace lab3 siit

{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness(dogs);
avarageFitness = getAvarageFitness(dogs);
}
public double getTheBestFitness(List<Dot> dogs)
{
double bestFitness = 9999;
for (int 1 = @; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;
}
public double getAvarageFitness(List<Dot> dogs)
{
double avarageFitness = 0;
for (int 1 = @; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;
}
}
}

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3 siit

{
class GA

{
Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random();
List<Dot> dots = new List<Dot>();
for (int 1 = @; i < 20; i++)
{

List<double> chromosomes = new List<double>();



for (int j = @; j < 20; j++)
{

¥

dots.Add(new Dot(chromosomes));

chromosomes.Add(random.NextDouble() % 2 -1);

}
//Sorting by fitness

for (int 1 = @; i < dots.Count; i++)

{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1].fitness)
{
Dot tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;
}
}
}

Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);

int k = 0;
while (!isReady(historyOfPopulation))
{

Thread.Sleep(10);

historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
k++;
}
}

private Population getNextPupulation(Population
parentPopulation)

{

List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; i++)

{

List<Dot> childrenDots = getChildren(
parentPopulation.dots[random.Next() % 10 + 10],
parentPopulation.dots[random.Next() % 10 + 10]
)s

childrenPopulationDots.AddRange(childrenDots);

}

//Sorting by fitness
for (int 1 = @; i < childrenPopulationDots.Count; i++)
{
for (int j = childrenPopulationDots.Count - 1; j > i;
j--)
{



if (childrenPopulationDots[j].fitness >
childrenPopulationDots[j - 1].fitness)
{
Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] =
childrenPopulationDots[]j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}

Population childrenPopulation = new
Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> historyOfPopulation)
{
if (historyOfPopulation.Count < 100)
return false;
else
{
for (int i = historyOfPopulation.Count - 100; i <
historyOfPopulation.Count; i++)
{
if (historyOfPopulation[historyOfPopulation.Count
- 100].avarageFitness != historyOfPopulation[i].avarageFitness)
return false;

}
return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{

List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%20;
List<double> firstChromosomes = new List<double>();
List<double> secondChromosomes = new List<double>();
for (int j = 0; j < 20; j++)
{
if(j<pointCross)
{
firstChromosomes.Add(father.chromosomes[j]);
secondChromosomes.Add(mother.chromosomes[j]);

}
else
{
firstChromosomes.Add(mother.chromosomes[j]);
secondChromosomes.Add(father.chromosomes[j]);
}



childrenDots.Add(new Dot (firstChromosomes));
childrenDots.Add(new Dot(secondChromosomes));

//Mutation
for (int j = @; j < childrenDots.Count; j++)
{

int prob = random.Next(e, 20);

if (prob == 7)

{

int number = random.Next(20);
childrenDots[j].chromosomes[number] =
random.NextDouble() % 2 - 1;

}
}

return childrenDots;

The graph of fitness vs generation:
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Best fithess with mutation is O;
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The task is to minimise y = 204 + 2%, (xl2 - Acos(ani)) in the following way:

(1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness doesn’t change.
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