
Contemporary Intelligent Intellectual Technology (CIIT)
Kirill Zabrodsky II-11

Task №1 (20-D version of Rastrigin’s Function)

 The task is to minimise 𝑦 = 20𝐴 + ∑ (𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖)) 20

𝑖=1 in the following way:

(1) Represent each of xi(i = 1, · · · , 20) by a chromosome with 20 genes.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness dosen’t change.

Source code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_
{
 class Dot
 {
 public List<double> chromosomes;
 public double fitness;
 public Dot(List<double> chromosomes)
 {
 this.chromosomes = chromosomes;
 fitness = getFitness(chromosomes);
 }
 private double getFitness(List<double> chromosomes)
 {
 double fitness = chromosomes.Count;
 for (int i=0;i<chromosomes.Count;i++)
 {
 double temp = chromosomes[i]* chromosomes[i] -
Math.Cos(2 * Math.PI * chromosomes[i]);
 fitness += temp;
 }
 return fitness;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_
{
 class Population
 {
 public List<Dot> dots;
 public double theBestFitness;
 public double avarageFitness;
 public Population(List<Dot> dogs)
 {
 this.dots = dogs;
 theBestFitness = getTheBestFitness(dogs);
 avarageFitness = getAvarageFitness(dogs);
 }
 public double getTheBestFitness(List<Dot> dogs)
 {
 double bestFitness = 9999;
 for (int i = 0; i < dogs.Count; i++)
 if (bestFitness > dogs[i].fitness)
 bestFitness = dogs[i].fitness;
 return bestFitness;
 }
 public double getAvarageFitness(List<Dot> dogs)
 {
 double avarageFitness = 0;
 for (int i = 0; i < dogs.Count; i++)
 avarageFitness += dogs[i].fitness;
 avarageFitness /= dogs.Count;
 return avarageFitness;
 }
 }
}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3_siit_
{
 class GA
 {
 Random random;
 List<Population> historyOfPopulation;
 public GA()
 {
 random = new Random();
 List<Dot> dots = new List<Dot>();
 for (int i = 0; i < 20; i++)
 {
 List<double> chromosomes = new List<double>();

 for (int j = 0; j < 20; j++)
 {
 chromosomes.Add(random.NextDouble() % 2 -1);
 }
 dots.Add(new Dot(chromosomes));
 }
 //Sorting by fitness
 for (int i = 0; i < dots.Count; i++)
 {
 for (int j = dots.Count - 1; j > i; j--)
 {
 if (dots[j].fitness > dots[j - 1].fitness)
 {
 Dot tempDot = dots[j];
 dots[j] = dots[j - 1];
 dots[j - 1] = tempDot;
 }
 }
 }
 Population startPopulation = new Population(dots);
 historyOfPopulation = new List<Population>();
 historyOfPopulation.Add(startPopulation);
 int k = 0;
 while (!isReady(historyOfPopulation))
 {
 Thread.Sleep(10);

historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
 k++;
 }
 }
 private Population getNextPupulation(Population
parentPopulation)
 {
 List<Dot> childrenPopulationDots = new List<Dot>();

 for (int i = 0; i < 10; i++)
 {
 List<Dot> childrenDots = getChildren(
 parentPopulation.dots[random.Next() % 10 + 10],
 parentPopulation.dots[random.Next() % 10 + 10]
);
 childrenPopulationDots.AddRange(childrenDots);
 }
 //Sorting by fitness
 for (int i = 0; i < childrenPopulationDots.Count; i++)
 {
 for (int j = childrenPopulationDots.Count - 1; j > i;
j--)
 {

 if (childrenPopulationDots[j].fitness >
childrenPopulationDots[j - 1].fitness)
 {
 Dot tempDot = childrenPopulationDots[j];
 childrenPopulationDots[j] =
childrenPopulationDots[j - 1];
 childrenPopulationDots[j - 1] = tempDot;
 }
 }
 }
 Population childrenPopulation = new
Population(childrenPopulationDots);
 return childrenPopulation;
 }

 Boolean isReady(List<Population> historyOfPopulation)
 {
 if (historyOfPopulation.Count < 100)
 return false;
 else
 {
 for (int i = historyOfPopulation.Count - 100; i <
historyOfPopulation.Count; i++)
 {
 if (historyOfPopulation[historyOfPopulation.Count
- 100].avarageFitness != historyOfPopulation[i].avarageFitness)
 return false;
 }
 return true;
 }
 }
 private List<Dot> getChildren(Dot father, Dot mother)
 {
 List<Dot> childrenDots = new List<Dot>();
 int pointCross = random.Next()%20;
 List<double> firstChromosomes = new List<double>();
 List<double> secondChromosomes = new List<double>();
 for (int j = 0; j < 20; j++)
 {
 if(j<pointCross)
 {
 firstChromosomes.Add(father.chromosomes[j]);
 secondChromosomes.Add(mother.chromosomes[j]);
 }
 else
 {
 firstChromosomes.Add(mother.chromosomes[j]);
 secondChromosomes.Add(father.chromosomes[j]);
 }
 }

 childrenDots.Add(new Dot(firstChromosomes));
 childrenDots.Add(new Dot(secondChromosomes));

 //Mutation
 for (int j = 0; j < childrenDots.Count; j++)
 {
 int prob = random.Next(0, 20);
 if (prob == 7)
 {
 int number = random.Next(20);
 childrenDots[j].chromosomes[number] =
random.NextDouble() % 2 - 1;
 }
 }
 return childrenDots;
 }
 }
}

The graph of fitness vs generation:

Best fitness with mutation is 0;
Best fitness without mutation is

Task #2 (3-D Rastrigin’s Function)

The task is to minimise 𝑦 = 20𝐴 + ∑ (𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖)) 20

𝑖=1 in the following way:

 (1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.

(3) Evolve this population till fitness doesn’t change.

0 generation

5th generation

10th generation

15th generation

20th generation

