
MINISTRY OF EDUCATION OF REPUBLIC OF BELARUS
ESTABLISHMENT OF EDUCATION
"BREST STATE TECHNICHNICAL UNIVERSITY"

[bookmark: _GoBack]Practice work №2
 «Evolutionary Computation»

									Made by:
		Ivan Bakunovich
		Checked by:
		Prof. Akira

2016
Task

Program code (C#)

File 1

namespace CIIT_Lab3
{
 class Work
 {
 public double[,] genes;
 public List<double[]> y;
 public List<double> average_generation_gen;
 public List<double> max_generation_gen;
 public double[] fortime;
 public int[] keys;
 double min, max;
 int size;
 Random rnd;
 public void Generate()
 {
 double[] fortime = new double[size];
 min = -1; max = 1;
 y = new List<double[]>();
 rnd = new Random();
 size = 20;
 genes = new double[size, size];
 for (int i = 0; i < size; i++)
 for (int j = 0; j < size; j++)
 genes[i, j] = rnd.NextDouble() * (max - min) + min;
 //genes[i, j] = (double)rnd.Next(-10000, 10001) / 10000;
 max_generation_gen = new List<double>();
 average_generation_gen = new List<double>();
 }
 public void FindY()
 {
 double[] Y = new double[size];
 for (int i = 0; i < size; i++){
 for (int j = 0; j < size; j++)
 Y[i] += (Math.Pow(genes[i, j], 2) - Math.Cos(2 * Math.PI * genes[i, j]));
 Y[i] += size;
 }
 y.Add(Y);
 }
 public void Delete_Bad_Genes()
 {
 keys = new int[size];
 for (int i = 0; i < size; i++) keys[i] = i;
 fortime = new double[size];
 fortime = y.Last().ToArray();
 Array.Sort(fortime, keys);
 average_generation_gen.Add(y.Last().Average());
 max_generation_gen.Add(y.Last().Min());
 }
 public void Cross()
 {
 int p = 0;
 double[,] newgenerat = new double[size, size];
 for (int i = 0; i < size/2; i++)
 {
 int first_parent = rnd.Next(0, size / 2);
 int second_parent = rnd.Next(0, size / 2);
 double[] first_parent_mass = new double[size];
 double[] second_parent_mass = new double[size];
 for (int j = 0; j < size; j++)
 {
 first_parent_mass[j] = genes[keys[first_parent],j];
 second_parent_mass[j] = genes[keys[second_parent], j];
 }
 int num = rnd.Next(1, size);
 for (int j = num; j < size; j++)
 {
 double k = first_parent_mass[j];
 first_parent_mass[j] = second_parent_mass[j];
 second_parent_mass[j] = k;
 }
 for(int j = 0; j < size; j++)
 {
 newgenerat[p, j] = first_parent_mass[j];
 newgenerat[p + 1, j] = second_parent_mass[j];
 }
 p += 2;
 }
 genes = new double[size, size];
 genes = newgenerat;
 }
 public void mutation()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size; j++)
 {
 int num = rnd.Next(0, size);
 if (num == 0)
 {
 genes[i, j] = rnd.NextDouble() * (max - min) + min;
 //genes[i,j] = (double)rnd.Next(-10000, 10001) / 10000;
 }
 }
 }
 }
 public bool Uslovie()
 {
 if (max_generation_gen.Count == 500) return true;
 return false;
 }
 public void picture()
 {
 Console.WriteLine("Generation " + max_generation_gen.Count);
 Console.WriteLine("Min = " + max_generation_gen.Last());
 Console.WriteLine("Average = " + average_generation_gen.Last());
 }
 public void FTLE()
 {
 StreamWriter file = new StreamWriter(@"B:\All_study_stuff_are_here\4 course\СИИТ\lab3\max.txt", true);
 StreamWriter file1 = new StreamWriter(@"B:\All_study_stuff_are_here\4 course\СИИТ\lab3\avg.txt", true);
 StreamWriter file2 = new StreamWriter(@"B:\All_study_stuff_are_here\4 course\СИИТ\lab3\num.txt", true);
 file.WriteLine(max_generation_gen.Last().ToString());
 file1.WriteLine(average_generation_gen.Last().ToString());
 file2.WriteLine(max_generation_gen.Count().ToString());
 file.Close();
 file1.Close();
 file2.Close();
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Work obj = new Work();
 obj.Generate();
 do
 {
 obj.FindY();
 obj.Delete_Bad_Genes();
 obj.picture();
 obj.FTLE();
 obj.Cross();
 obj.mutation();
 } while (obj.Uslovie() == false);
 Console.WriteLine("An excellent gene!\n");
 }
 }
}

RESULTS
Task 1

Graphic of best chromosomes in all generations:
[image:]

image1.png
18-

16

14

12

10

50

160

)

1o

180

o 200 20 260 260

280

300

320

340

360

BT

40 40 450

450

500

