Task 1

import java.util.ArrayList;
import java.util.Arrays;

import java.util.Random;

public class MainTask1

{

static Random random = new Random(/*System.currentTimeMillis()*/412654812);

static class Chromosome
{
double[] genes;
public Chromosome()
{
genes = new double[20];
for(inti=0;i<20; i++)
genesli] = random.nextDouble() * 2 - 1;
}
double getFitness()
{
double y = 20;
for(inti=0;i<20;i++)
y += genes[i] * genesl[i] - Math.cos(2 * Math.PI * genesli]);

returny;

static class Generation

Chromosome[] chromosomes;
public Generation()
{
chromosomes = new Chromosome[20];
for(inti=0;i<20; i++)
chromosomesli] = new Chromosome();
}
double getAverageFitness()
{
double counter = 0;
for(Chromosome i : chromosomes)
counter += i.getFitness();
return counter / 20;
}
void sort()
{
Arrays.sort(chromosomes, (01, 02) ->
{
double o1fit = ol.getFitness();
double o2fit = 02.getFitness();
if(o1fit < o2fit)
return -1;
else if(o1fit > o2fit)
return 1;
else

return O;

1;

Chromosome(] get2RandomChromosomes()

{

Chromosome[] random2 = new Chromosome|[2];

random2[0] = chromosomes[random.nextInt(10)];

random2[1] = chromosomes[random.nextInt(10)];

return random2;

Chromosome getBestChromosome()

{

return chromosomes[0];

static Chromosome crossover(Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt(first.genes.length);

Chromosome child = new Chromosome();

System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint,

second.genes.length - crossoverPoint);

/*if(random.nextInt(20) == 13)

{

int pos = random.nextiInt(child.genes.length);
if(child.genes[pos] == 0)

child.genes[pos] = 1;
else

child.genes[pos] = 0;

¥/

return child;

static ArrayList<Double> fitnessHistory;
static boolean isLastGenerationUnchanged()
{
double tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if(tmp == 0.0)
return true;
if(fitnessHistory.size() <= 124)
return false;
for(inti=0; i< 124; i++)
if(fitnessHistory.get(fitnessHistory.size() - i - 1) I=tmp)
return false;

return true;

public static void main(String[] args) throws InterruptedException

{

ArraylList<Generation> generations = new ArrayList<>();

generations.add(new Generation());

generations.get(0).sort();

fitnessHistory = new ArrayList<>();

fitnessHistory.add(generations.get(0).getAverageFitness());
System.out.printin(String.format("%d\t\t%.4f\t\t%.4f", 0, generations.get(0).getAverageFitness(),

generations.get(0).getBestChromosome().getFitness()));

for(inti=1;; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)
{
Chromosome[] random?2 = generations.get(generations.size() - 1).get2RandomChromosomes();
newGeneration.chromosomes|[j] = crossover(random2[0], random2[1]);
}
newGeneration.sort();
generations.add(newGeneration);
generations.remove(0);
fitnessHistory.add(newGeneration.getAverageFitness());
System.out.printIn(String.format("%d\t\t%.4f\t\t%.4f", i, newGeneration.getAverageFitness(),

newGeneration.getBestChromosome().getFitness()));

if(isLastGenerationUnchanged())

break;

Thread.sleep(1000);

}

Task 2import java.util.ArrayList;
import java.util.Arrays;

import java.util.Random;

public class MainTask2

{

static Random random = new Random(/*System.currentTimeMillis()*/2654812);

static class Chromosome
{
double[] genes;

public Chromosome()

{
genes = new double[11];
for(inti=0;i<11;i++)
genes[i] = random.nextInt(2);
}

double getFitness()
{
double x = 0;
for(inti=1;i<11;i++)
if(genes[i] == 1)
X += Math.pow(2, i - 1);
x /=1023;
if(genes[0] == 0)
X *=-1;

return 1 + (x * x - Math.cos(Math.PI * 2 * x));

static class Generation

{

Chromosome[] chromosomes;

public Generation()

{
chromosomes = new Chromosome[20];
for(inti=0;i<20;i++)
chromosomesli] = new Chromosome();
}

double getAverageFitness()

{
double counter = 0;
for(Chromosome i : chromosomes)

counter += i.getFitness();

return counter / 20;

}

void sort()

{

Arrays.sort(chromosomes, (01, 02) ->
{
double o1fit = ol.getFitness();
double o2fit = 02.getFitness();
if(o1fit < o2fit)
return -1;
else if(o1fit > 02fit)
return 1;

else

return O0;

1;
}

Chromosome(] get2RandomChromosomes()

{
Chromosome[] random2 = new Chromosome[2];
random2[0] = chromosomes[random.nextInt(10)];
random2[1] = chromosomes[random.nextIint(10)];
return random2;

}

Chromosome getBestChromosome()

{

return chromosomes[0];

static Chromosome crossover(Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt(first.genes.length);

Chromosome child = new Chromosome();

System.arraycopy(first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint,

second.genes.length - crossoverPoint);

if(random.nextInt(20) == 13)

{
int pos = random.nextInt(child.genes.length);
if(child.genes[pos] == 0)
child.genes[pos] = 1;
else
child.genes[pos] = 0;
}

return child;

static ArrayList<Double> fitnessHistory;
static boolean isLastGenerationUnchanged()
{
double tmp = fitnessHistory.get(fitnessHistory.size() - 1);
if(tmp == 0.0)
return true;
if(fitnessHistory.size() <= 100)
return false;
for(inti=0; i< 100; i++)
if(fitnessHistory.get(fitnessHistory.size() - i - 1) !=tmp)
return false;

return true;

public static void main(String[] args)

{
ArrayList<Generation> generations = new ArrayList<>();
generations.add(new Generation());
generations.get(0).sort();
fitnessHistory = new ArrayList<>();
fitnessHistory.add(generations.get(0).getAverageFitness());

System.out.printin(String.format("%d\t\t%.4f\t\t%.4f", O,
generations.get(0).getAverageFitness(),

generations.get(0).getBestChromosome().getFitness()));

for(Chromosome j : generations.get(0).chromosomes)

{
double x = 0;
for(inti=1;i<11;i++)
if(j.genes[i] == 1)
X += Math.pow(2, i - 1);
x /=1023;
if(j.genes[0] == 0)
X *=-1;
System.out.printIn(String.format("%.4f\t%.4f", x, j.getFitness()));
}

for(inti=1;;i++)
{
Generation newGeneration = new Generation();

for(int j = 0; j < newGeneration.chromosomes.length; j++)

{

Chromosome([] random2 = generations.get(generations.size() -
1).get2RandomChromosomes();

newGeneration.chromosomes[j] = crossover(random2[0], random2[1]);
}
newGeneration.sort();
generations.add(newGeneration);
generations.remove(0);
fitnessHistory.add(newGeneration.getAverageFitness());

System.out.printin(String.format("%d\t\t%.4f\t\t%.4f", i,
newGeneration.getAverageFitness(),

newGeneration.getBestChromosome().getFitness()));

ifli==2|]i==4]|i==6]]i==20)

for(Chromosome j : newGeneration.chromosomes)

{
double x = 0;
for(intz=1;z<11; z++)
if(j.genes[z] == 1)
X += Math.pow(2, z - 1);
x /=1023;
if(j.genes[0] == 0)
X *¥=-1;
System.out.printIn(String.format("%.4f\t%.4f", x, j.getFitness()));
}

if(isLastGenerationUnchanged())

break;

fitness

120

100

80

60

40

20

10

20

30

40

50
generation

60

70

80

90

100

