MINISTRY OF EDUCATION OF REPUBLIC OF BELARUS
ESTABLISHMENT OF EDUCATION
"BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work Ne2
« Minimization of Test Functions»

Made by:

Ivan Bakunovich
Checked by:
Prof. Akira

2016



Task
1. Minimize the following y in (i) 20—D and (iii) 2-D cases.

=nA + Z(x — Acos(2mx;))

2. Show the following graphics in each of 3 cases (i), (i) and (iii).
(1) the graph of _tness vs generation.
(2) Create a population of 20 chromosomes at random, with _tness being y.

Part 1. 20-D
Program code (C#)
namespace CIIT_Lab3
{
class Work
{

public double[,] genes;
public List<double[]> y;
public List<double> average_generation_gen;
public List<double> max_generation_gen;
public double[] fortime;
public int[] keys;
double min, max;
int size;
Random rnd;
public void Generate()
{
double[] fortime = new double[size];
min = -1; max = 1;
y = new List<double[]>();
rnd = new Random();
size = 20;
genes = new double[size, size];
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
genes[i, j] = rnd.NextDouble() * (max - min) + min;
//genes[i, j] = (double)rnd.Next(-10000, 10001) / 10000;
max_generation_gen = new List<double>();
average_generation_gen = new List<double>();

public void FindY()

double[] Y = new double[size];
for (int i = @; i < size; i++){
for (int j = @; j < size; j++)
Y[i] += (Math.Pow(genes[i, j], 2) - Math.Cos(2 * Math.PI * genes[i, j]));
Y[i] += size;

}
y.Add(Y);

public void Delete_Bad_Genes()

{
keys = new int[size];
for (int i = @; i < size; i++) keys[i] = i;
fortime = new double[size];
fortime = y.Last().ToArray();
Array.Sort(fortime, keys);



average_generation_gen.Add(y.Last().Average());
max_generation_gen.Add(y.Last().Min());

}
public void Cross()
{
int p = 0;
double[,] newgenerat = new double[size, size];
for (int i = 0; i < size/2; i++)
{
int first_parent = rnd.Next(@, size / 2);
int second_parent = rnd.Next(@, size / 2);
double[] first_parent_mass = new double[size];
double[] second_parent_mass = new double[size];
for (int j = 0; j < size; j++)
{
first_parent_mass[j] = genes[keys[first_parent],j];
second_parent_mass[j] = genes[keys[second_parent], j];
}
int num = rnd.Next(1, size);
for (int j = num; j < size; j++)
{
double k = first_parent_mass[j];
first_parent_mass[j] = second_parent_mass[j];
second_parent_mass[j] = k;
}
for(int j = ©; j < size; j++)
{
newgenerat[p, j] = first_parent_mass[j];
newgenerat[p + 1, j] = second_parent_mass[j];
}
p += 2;
}
genes = new double[size, size];
genes = newgenerat;
}
public void mutation()
{
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
int num = rnd.Next(9, size);
if (num == 9)
{
genes[i, j] = rnd.NextDouble() * (max - min) + min;
}
}
}
}
public bool Uslovie()
{
if (max_generation_gen.Count == 500) return true;
return false;
}
public void picture()
{

Console.WriteLine("Generation " + max_generation_gen.Count);
Console.WriteLine("Min = " + max_generation_gen.Last());
Console.WriteLine("Average = " + average_generation_gen.Last());

public void FTLE()

{
StreamiWriter file = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\CMUT\1lab3\max.txt", true);



StreamWriter filel = new StreamWriter(@"B:\All_study_ stuff_are_here\4

course\CMNT\1lab3\avg.txt", true);

StreamWriter file2 = new StreamWriter(@"B:\All_study_ stuff_are_here\4

course\CMUT\1lab3\num.txt", true);

}

}

file.WriteLine(max_generation_gen.Last().ToString());
filel.WritelLine(average_generation_gen.Last().ToString());
file2.WriteLine(max_generation_gen.Count().ToString());
file.Close();

filel.Close();

file2.Close();

class Program

{

Graphic of best chromosomes (red graphic) and average (green graphic) in all

static void Main(string[] args)

{

Work obj = new Work();
obj.Generate();
do
{
obj.FindY();
obj.Delete_Bad_Genes();
obj.picture();
obj.FTLE();
obj.Cross();
obj.mutation();
} while (obj.Uslovie() == false);
Console.WriteLine("An excellent gene!\n");

RESULTS

generations:

Part 1. 2-D
Program code (C#)



namespace CIIT_Lab3
{

class Workl
{
public double[] fortime;
public int[] keys;
public List<double[]> y;
public int[,] genes;
public List<double> average_generation_gen;
public List<double> max_generation_gen;
Random rnd;
public void Generate()
{
y = new List<double[]>();
rnd = new Random();
genes = new int[20, 11];
for (int i = 0; 1 < 20; i++)
for (int j = 0; j < 11; j++)
genes[i, j] = rnd.Next(®,2);
max_generation_gen = new List<double>();
average_generation_gen = new List<double>();

public void FindY()
{
double[] Y = new double[20];
for(int i = ©; i < 20; i++)
{
String s = "";
for(int j = 0; j< 11; j++)
{
if (j == @) continue;
else

{

}
}
Y[i] = Convert.ToInt32(s, 2);
Y[i] /= 1023;
if (genes[i, @] == 0) Y[i] = -Y[i];

s += genes[i, j].ToString();

¥
for (int i = 0; 1 < 20; i++)
Y[i] = 1 + (Math.Pow(Y[i], 2) - Math.Cos(2 * Math.PI * Y[i]));

y.Add(Y);

¥

public void Delete_Bad_Genes()

{
keys = new int[20];
for (int i = @; i < 20; i++) keys[i] = i;
fortime = new double[20];
fortime = y.Last().ToArray();
Array.Sort(fortime, keys);
average_generation_gen.Add(y.Last().Average());
max_generation_gen.Add(y.Last().Min());

}

public void Cross()
{
int p = 0;
int[,] newgenerat = new int[20, 11];
for (int i = 0; 1 < 10; i++)
{
int first_parent = rnd.Next(9, 10);
int second_parent = rnd.Next(0, 10);
int[] first_parent_mass = new int[11];
int[] second_parent_mass = new int[11];
for (int j = @; j < 11; j++)



first_parent_mass[j] = genes[keys[first_parent], j];
second_parent_mass[j] = genes[keys[second_parent], j];
}
int num = rnd.Next(1, 11);
for (int j = num; j < 11; j++)

{
int k = first_parent_mass[j];
first_parent_mass[j] = second_parent_mass[j];
second_parent_mass[j] = k;
}
for (int j = 0; j < 11; j++)
{
newgenerat[p, j] = first_parent_mass[j];
newgenerat[p + 1, j] = second_parent_mass[j];
}
p += 2;
}
genes = new int[20, 11];
genes = newgenerat;
}
public void mutation()
{
for (int i = 0; i < 20; i++)
{
for (int j = 0; j < 11; j++)
{
int num = rnd.Next(o@, 11);
if (num == @)
{
if (genes[i, j] == 1) genes[i, j] = 0;
else genes[i, j] = 1;
}
}
}
}
public bool Uslovie()
{
if (max_generation_gen.Count == 500) return true;
return false;
}
public void picture()
{
Console.WriteLine("Generation " + max_generation_gen.Count);
Console.WriteLine("Min = " + max_generation_gen.Last());
Console.WriteLine("Average = " + average_generation_gen.Last());
}
public void FTLE()
{

StreamiWriter file = new StreamWriter(@"B:\All_study_stuff_are_here\4

course\CHMNT\1lab3\max1l.txt", true);

StreamWriter filel = new StreamWriter(@"B:\All_study_stuff_are_here\4

course\CMNT\1lab3\avgl.txt", true);

file.WriteLine(max_generation_gen.Last().ToString());
filel.WritelLine(average_generation_gen.Last().ToString());
file.Close();

filel.Close();

}

class Program

static void Main(string[] args)

{
Workl obj = new Workl();

obj.Generate();



obj.FindY();

obj.Delete_Bad_Genes();

obj.picture();

obj.FTLE();

obj.Cross();

obj.mutation();
} while (obj.Uslovie() == false);
Console.WriteLine("An excellent gene!\n");

}
}
}

RESULTS
5 graphics of 2 different generations (first, 3 from average epochs and last generations):
Y — X (in binary):
0,000317059016806343 - 0000000100
0,177656679509898 - 0001100000
0,951910641925863 - 1111010010
0,952373174256265 - 1111010100
0,953758621913402 - 1111011000
0,960386486899429 - 1110110111
0,964474192072199 - 1111100111
1,0895337072928 - 1101110100
1,36299148898277 - 1100101011
1,58706788824567 - 1011111010

Y — X (in binary):
1,98170779310836E-05 - 0000000001
1,98170779310836E-05 - 0000000001
0,000317059016806343 - 0000000100
0,00049539137345278 - 0000000101
0,00049539137345278 - 0000000101
0,00049539137345278 - 0000000101
0,00049539137345278 - 0000000101



0,00049539137345278 - 0000000101
0,00049539137345278 - 0000000101
0,00872783248626696 - 0000010101

! I I I I I
T T T T T T
1 -1 09 0.8 0.7 06 03

Y — X (in binary):
0 - 0000000000
0 - 0000000000
0 - 0000000000
0 - 0000000000
0 - 0000000000
0,000317059016806343 - 0000000100
0,000317059016806343 - 0000000100
0,000317059016806343 - 0000000100
0,000317059016806343 - 0000000100
0,000317059016806343 - 0000000100

I I I I I ! I I I
T T T T T T T T T
L -1 RikY 0.8 0.7 0.6 0.5 -04 03 02

Y — X (in binary):




0 - 0000000000

0 - 0000000000

0 - 0000000000

7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
0,000178349432314651 - 0000000011
0,000317059016806343 - 0000000100
0,000713340099422144 - 0000000110

; f f f f f }
-1 09 08 07 06 03 04

Y — X (in binary):

0 - 0000000000

0 - 0000000000
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
7,92676002088211E-05 - 0000000010
0,000178349432314651 - 0000000011
0,000317059016806343 - 0000000100




, , , , , , ‘ , , , ‘ , ‘ , , , , , , ‘
1 08 08 07 06 05 04 £H3 02 01 T 0.1 02 03 0.4 03 0.6 0.1 05 0.9 i

And graphic of best chromosomes (red graphic) and average (green graphic) in all
generations:

081
064

041




