

MINISTRY OF EDUCATION OF REPUBLIC OF BELARUS

ESTABLISHMENT OF EDUCATION

"BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №2

 « Minimization of Test Functions»

 Made by:

 Ivan Bakunovich

 Checked by:

 Prof. Akira

2016

Task

1. Minimize the following y in (i) 20-D and (iii) 2-D cases.

𝑦 = 𝑛𝐴 + ∑(𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑛

𝑖=1

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Part 1. 20-D
Program code (C#)

namespace CIIT_Lab3
{
 class Work
 {
 public double[,] genes;
 public List<double[]> y;
 public List<double> average_generation_gen;
 public List<double> max_generation_gen;
 public double[] fortime;
 public int[] keys;
 double min, max;
 int size;
 Random rnd;
 public void Generate()
 {
 double[] fortime = new double[size];
 min = -1; max = 1;
 y = new List<double[]>();
 rnd = new Random();
 size = 20;
 genes = new double[size, size];
 for (int i = 0; i < size; i++)
 for (int j = 0; j < size; j++)
 genes[i, j] = rnd.NextDouble() * (max - min) + min;
 //genes[i, j] = (double)rnd.Next(-10000, 10001) / 10000;
 max_generation_gen = new List<double>();
 average_generation_gen = new List<double>();
 }
 public void FindY()
 {
 double[] Y = new double[size];
 for (int i = 0; i < size; i++){
 for (int j = 0; j < size; j++)
 Y[i] += (Math.Pow(genes[i, j], 2) - Math.Cos(2 * Math.PI * genes[i, j]));
 Y[i] += size;
 }
 y.Add(Y);
 }
 public void Delete_Bad_Genes()
 {
 keys = new int[size];
 for (int i = 0; i < size; i++) keys[i] = i;
 fortime = new double[size];
 fortime = y.Last().ToArray();
 Array.Sort(fortime, keys);

 average_generation_gen.Add(y.Last().Average());
 max_generation_gen.Add(y.Last().Min());
 }
 public void Cross()
 {
 int p = 0;
 double[,] newgenerat = new double[size, size];
 for (int i = 0; i < size/2; i++)
 {
 int first_parent = rnd.Next(0, size / 2);
 int second_parent = rnd.Next(0, size / 2);
 double[] first_parent_mass = new double[size];
 double[] second_parent_mass = new double[size];
 for (int j = 0; j < size; j++)
 {
 first_parent_mass[j] = genes[keys[first_parent],j];
 second_parent_mass[j] = genes[keys[second_parent], j];
 }
 int num = rnd.Next(1, size);
 for (int j = num; j < size; j++)
 {
 double k = first_parent_mass[j];
 first_parent_mass[j] = second_parent_mass[j];
 second_parent_mass[j] = k;
 }
 for(int j = 0; j < size; j++)
 {
 newgenerat[p, j] = first_parent_mass[j];
 newgenerat[p + 1, j] = second_parent_mass[j];
 }
 p += 2;
 }
 genes = new double[size, size];
 genes = newgenerat;
 }
 public void mutation()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size; j++)
 {
 int num = rnd.Next(0, size);
 if (num == 0)
 {
 genes[i, j] = rnd.NextDouble() * (max - min) + min;
 }
 }
 }
 }
 public bool Uslovie()
 {
 if (max_generation_gen.Count == 500) return true;
 return false;
 }
 public void picture()
 {
 Console.WriteLine("Generation " + max_generation_gen.Count);
 Console.WriteLine("Min = " + max_generation_gen.Last());
 Console.WriteLine("Average = " + average_generation_gen.Last());
 }
 public void FTLE()
 {
 StreamWriter file = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\СИИТ\lab3\max.txt", true);

 StreamWriter file1 = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\СИИТ\lab3\avg.txt", true);
 StreamWriter file2 = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\СИИТ\lab3\num.txt", true);
 file.WriteLine(max_generation_gen.Last().ToString());
 file1.WriteLine(average_generation_gen.Last().ToString());
 file2.WriteLine(max_generation_gen.Count().ToString());
 file.Close();
 file1.Close();
 file2.Close();
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Work obj = new Work();
 obj.Generate();
 do
 {
 obj.FindY();
 obj.Delete_Bad_Genes();
 obj.picture();
 obj.FTLE();
 obj.Cross();
 obj.mutation();
 } while (obj.Uslovie() == false);
 Console.WriteLine("An excellent gene!\n");
 }
 }
}

RESULTS

Graphic of best chromosomes (red graphic) and average (green graphic) in all

generations:

Part 1. 2-D
Program code (C#)

namespace CIIT_Lab3
{
 class Work1
 {
 public double[] fortime;
 public int[] keys;
 public List<double[]> y;
 public int[,] genes;
 public List<double> average_generation_gen;
 public List<double> max_generation_gen;
 Random rnd;
 public void Generate()
 {
 y = new List<double[]>();
 rnd = new Random();
 genes = new int[20, 11];
 for (int i = 0; i < 20; i++)
 for (int j = 0; j < 11; j++)
 genes[i, j] = rnd.Next(0,2);
 max_generation_gen = new List<double>();
 average_generation_gen = new List<double>();
 }
 public void FindY()
 {
 double[] Y = new double[20];
 for(int i = 0; i < 20; i++)
 {
 String s = "";
 for(int j = 0; j< 11; j++)
 {
 if (j == 0) continue;
 else
 {
 s += genes[i, j].ToString();
 }
 }
 Y[i] = Convert.ToInt32(s, 2);
 Y[i] /= 1023;
 if (genes[i, 0] == 0) Y[i] = -Y[i];
 }
 for (int i = 0; i < 20; i++)
 Y[i] = 1 + (Math.Pow(Y[i], 2) - Math.Cos(2 * Math.PI * Y[i]));
 y.Add(Y);
 }
 public void Delete_Bad_Genes()
 {
 keys = new int[20];
 for (int i = 0; i < 20; i++) keys[i] = i;
 fortime = new double[20];
 fortime = y.Last().ToArray();
 Array.Sort(fortime, keys);
 average_generation_gen.Add(y.Last().Average());
 max_generation_gen.Add(y.Last().Min());
 }
 public void Cross()
 {
 int p = 0;
 int[,] newgenerat = new int[20, 11];
 for (int i = 0; i < 10; i++)
 {
 int first_parent = rnd.Next(0, 10);
 int second_parent = rnd.Next(0, 10);
 int[] first_parent_mass = new int[11];
 int[] second_parent_mass = new int[11];
 for (int j = 0; j < 11; j++)

 {
 first_parent_mass[j] = genes[keys[first_parent], j];
 second_parent_mass[j] = genes[keys[second_parent], j];
 }
 int num = rnd.Next(1, 11);
 for (int j = num; j < 11; j++)
 {
 int k = first_parent_mass[j];
 first_parent_mass[j] = second_parent_mass[j];
 second_parent_mass[j] = k;
 }
 for (int j = 0; j < 11; j++)
 {
 newgenerat[p, j] = first_parent_mass[j];
 newgenerat[p + 1, j] = second_parent_mass[j];
 }
 p += 2;
 }
 genes = new int[20, 11];
 genes = newgenerat;
 }
 public void mutation()
 {
 for (int i = 0; i < 20; i++)
 {
 for (int j = 0; j < 11; j++)
 {
 int num = rnd.Next(0, 11);
 if (num == 0)
 {
 if (genes[i, j] == 1) genes[i, j] = 0;
 else genes[i, j] = 1;
 }
 }
 }
 }
 public bool Uslovie()
 {
 if (max_generation_gen.Count == 500) return true;
 return false;
 }
 public void picture()
 {
 Console.WriteLine("Generation " + max_generation_gen.Count);
 Console.WriteLine("Min = " + max_generation_gen.Last());
 Console.WriteLine("Average = " + average_generation_gen.Last());
 }
 public void FTLE()
 {
 StreamWriter file = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\СИИТ\lab3\max1.txt", true);
 StreamWriter file1 = new StreamWriter(@"B:\All_study_stuff_are_here\4
course\СИИТ\lab3\avg1.txt", true);
 file.WriteLine(max_generation_gen.Last().ToString());
 file1.WriteLine(average_generation_gen.Last().ToString());
 file.Close();
 file1.Close();
 }
}
class Program
 {
 static void Main(string[] args)
 {
 Work1 obj = new Work1();
 obj.Generate();

 do
 {
 obj.FindY();
 obj.Delete_Bad_Genes();
 obj.picture();
 obj.FTLE();
 obj.Cross();
 obj.mutation();
 } while (obj.Uslovie() == false);
 Console.WriteLine("An excellent gene!\n");
 }
 }
}

RESULTS

5 graphics of 2 different generations (first, 3 from average epochs and last generations):

Y – X (in binary):

 0,000317059016806343 - 0000000100

 0,177656679509898 - 0001100000

 0,951910641925863 - 1111010010

 0,952373174256265 - 1111010100

 0,953758621913402 - 1111011000

 0,960386486899429 - 1110110111

 0,964474192072199 - 1111100111

 1,0895337072928 - 1101110100

 1,36299148898277 - 1100101011

 1,58706788824567 - 1011111010

 Y – X (in binary):

 1,98170779310836E-05 - 0000000001

 1,98170779310836E-05 - 0000000001

 0,000317059016806343 - 0000000100

 0,00049539137345278 - 0000000101

 0,00049539137345278 - 0000000101

 0,00049539137345278 - 0000000101

 0,00049539137345278 - 0000000101

 0,00049539137345278 - 0000000101

 0,00049539137345278 - 0000000101

 0,00872783248626696 - 0000010101

Y – X (in binary):

 0 - 0000000000

 0 - 0000000000

 0 - 0000000000

 0 - 0000000000

 0 - 0000000000

 0,000317059016806343 - 0000000100

 0,000317059016806343 - 0000000100

 0,000317059016806343 - 0000000100

 0,000317059016806343 - 0000000100

 0,000317059016806343 - 0000000100

Y – X (in binary):

 0 - 0000000000

 0 - 0000000000

 0 - 0000000000

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 0,000178349432314651 - 0000000011

 0,000317059016806343 - 0000000100

 0,000713340099422144 - 0000000110

Y – X (in binary):

 0 - 0000000000

 0 - 0000000000

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 7,92676002088211E-05 - 0000000010

 0,000178349432314651 - 0000000011

 0,000317059016806343 - 0000000100

And graphic of best chromosomes (red graphic) and average (green graphic) in all

generations:

