Task 1

Avefaﬁ With Mutation

Best with mutation
——————

X

1 I 1 I 1 N

1 1 T 1 1 14

-10 140 130 160 170 180
y Average without mutation
Bast without mutation
234

204+

104

Avem% With Mutation

—
bl

Bast with mutation

25_1 ! Average without mutation

Best without mutation
s« |

-10 10 20 30 40 30 60 10 80 90 100 110 120 130

Source code:

import java.util.ArraylList;
import java.util.Arrays;
import java.util.Random;

public class MainTaskl
{

static Random random = new Random (System.currentTimeMillis());

static class Chromosome
{
double[] genes;
public Chromosome ()
{
genes = new double[20];
for(int i = 0; 1 < 20; i++)
genes[i] = random.nextDouble() * 2 - 1;
}
double getFitness()
{
double y = 20;
for(int 1 = 0; 1 < 20; i++)
y += genes[i] * genes[i] - Math.cos(2 * Math.PI * genes([i]);
return y;

static class Generation

{
Chromosome[] chromosomes;
public Generation ()

{

chromosomes = new Chromosome[20];
for(int 1 = 0; 1 < 20; i++)
chromosomes[i] = new Chromosome () ;
}
double getAverageFitness ()
{
double counter = 0;
for (Chromosome i : chromosomes)
counter += i.getFitness();
return counter / 20;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, 02) ->
{
double olfit = ol.getFitness/();
double 02fit = o2.getFitness|();
if(olfit < o2fit)
return -1;
else if(olfit > o02fit)
return 1;
else
return 0;
b
}

Chromosome[] get2RandomChromosomes ()

{
Chromosome[] random?2 = new Chromosome[2];
random2[0] = chromosomes|[random.nextInt (10)];

random?2 [1] chromosomes [random.nextInt (10)];

return random?2;

Chromosome getBestChromosome ()
{

return chromosomes|[0];

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt (first.genes.length);
Chromosome child = new Chromosome () ;

System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);
System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint);

/*Mutation block*/

1f (random.nextInt (20) == 13)
{
int pos = random.nextInt (child.genes.length);
if(child.genes[pos] == 0)
child.genes[pos] = 1;
else

child.genes[pos] = 0;

return child;

static ArrayList<Double> fitnessHistory;
static boolean islLastGenerationUnchanged()

{

double tmp = fitnessHistory.get (fitnessHistory.size () - 1);
if(tmp == 0.0)

return true;
if(fitnessHistory.size () <= 124)

return false;
for(int i = 0; 1 < 124; i++)
if(fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp)
return false;
return true;

public static void main(String[] args) throws InterruptedException
{
ArrayList<Generation> generations = new ArrayList<>();
generations.add (new Generation()):;
generations.get (0) .sort () ;
fitnessHistory = new ArrayList<>();
fitnessHistory.add (generations.get (0) .getAverageFitness());
System.out.println (String. format ("%$d\t\t%.4£\t\t%.4£f", O,

generations.get (0) .getAverageFitness (),
generations.get (0) .getBestChromosome () .getFitness()));

for(int i = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; Jj++)
{
Chromosome|[] random2 = generations.get (generations.size() -
1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover(random2[0], random2[1l]);
}
newGeneration.sort () ;
generations.add (newGeneration) ;

generations.remove (0) ;
fitnessHistory.add (newGeneration.getAverageFitness());
System.out.println (String. format ("$d\t\t%.4£\t\t%.4£", 1,

newGeneration.getAverageFitness (),
newGeneration.getBestChromosome () .getFitness ()));

if (isLastGenerationUnchanged())
break;

Thread.sleep(1000);

0.3

081

041

e,

.

[

Task 2

Awazraze
Bast
X
. . : : — ¥
10 11 12 13 14 13

fix=l+Hx"2 - cos(2%3 .14%x))

8 o @

"H

Generation 1

¥ fx)=1+(x"2 - cos(2%3.14%x))

Seria: 2
¢ e e

X
L L |
1 08 06 04 02 02 04 06 08 i "
Generation 2
F .
3 f=14x"2 - cos(223.14%x))
Berias 3
e O O

‘?H

Generation 14

3 fxpFlHx"2 - cos(2%3 . 14%x))

8 e e

‘FH

Source code:

import java.util.ArraylList;
import java.util.Arrays;
import java.util.Random;

public class MainTask2
{

static Random random = new Random (System.currentTimeMillis());

static class Chromosome
{
double[] genes;
public Chromosome ()
{
genes = new double[l1l];
for(int i = 0; 1 < 11; i++)
genes[i] = random.nextInt (2);
}
double getFitness|()
{
double x = 0;

for(int i = 1; 1 < 11; 1i++)
if (genes[i] == 1)
X += Math.pow(2, 1 - 1);
x/=1023;
if (genes[0] == 0)
x *= -1;

return 1 + (x * x - Math.cos(Math.PI * 2 * x));

static class Generation

Chromosome[] chromosomes;
public Generation|()

{

chromosomes = new Chromosome[20];
for(int i = 0; i < 20; i++)
chromosomes [i] = new Chromosome () ;

}
double getAverageFitness()
{
double counter = 0;
for (Chromosome 1 : chromosomes)
counter += i.getFitness();
return counter / 20;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, 02) ->
{
double olfit = ol.getFitness{();
double 02fit = o2.getFitness|();
if(olfit < o2fit)
return -1;
else if(olfit > o2fit)

return 1;
else
return 0O;
)
}
Chromosome [] get2RandomChromosomes ()
{
Chromosome[] random?2 = new Chromosome[2];

random?2 [0] chromosomes [random.nextInt (10)];
random2 [1] = chromosomes|[random.nextInt (10)1];

return random2;

Chromosome getBestChromosome ()
{

return chromosomes|[0];

static Chromosome crossover (Chromosome first, Chromosome second)

{

int crossoverPoint = random.nextInt (first.genes.length);
Chromosome child = new Chromosome () ;
System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);

System.arraycopy(second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint);

if (random.nextInt (20) == 13)
{
int pos = random.nextInt (child.genes.length);
if (child.genes[pos] == 0)
child.genes|[pos] = 1;
else
child.genes[pos] = 0;

return child;

static ArrayList<Double> fitnessHistory;
static boolean islLastGenerationUnchanged()
{
double tmp = fitnessHistory.get (fitnessHistory.size() - 1);
if (tmp == 0.0)
return true;
if(fitnessHistory.size () <= 100)
return false;
for(int 1 = 0; 1 < 100; i++)
if(fitnessHistory.get(fitnessHistory.size() - i - 1) != tmp)
return false;
return true;

public static void main (String[] args)

{

ArrayList<Generation> generations = new ArrayList<>();
generations.add (new Generation());
generations.get (0) .sort () ;

fitnessHistory = new ArrayList<>();
fitnessHistory.add(generations.get (0) .getAverageFitness());
System.out.println (String. format ("%$d\t\t%.4£\t\t%.4£", 0,

generations.get (0) .getAverageFitness(),
generations.get (0) .getBestChromosome () .getFitness()));

for(int 1 = 1; ; i++)
{
Generation newGeneration = new Generation();
for(int j = 0; j < newGeneration.chromosomes.length; j++)

{

Chromosome [] random?2 = generations.get (generations.size() -

1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover(random2[0], random2[1l]);

}

newGeneration.sort () ;

generations.add (newGeneration);

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());
System.out.println (String. format ("%$d\t\t%.4£\t\t%.4£f", i,

newGeneration.getAverageFitness(),
newGeneration.getBestChromosome () .getFitness()));

if (isLastGenerationUnchanged())
break;

