2-lab. Andrei Abramchuk

Minimization of Test Functions. High-dimensional Test Function

Task 1. 20-Dimensional Schwefel’s function

1. Minimize y in the following way!

y=nA+3"i-1(x2 i — A cos(2rxi))

(1) Represent each of xi(i=1, - - -, 20) by a chromosome with 20 genes.

(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change.

2. Show

(1) the graph of fitness vs generation.

(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosen’t change.

Results:
Best fitness with mutation equal 0;
Best fitness without mutation equal 17,325;
—@— Average, with mutation —@— Best, with mutation Average, without mutation Best, without mutation

30
27
- ,\\
21 ‘\\
18 '\
15
12

9

6

3

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Source code:

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.util.*;

public class minClass {

public ArrayList<ArrayList<Double>> ChrMas2 = new ArrayList<ArrayList<Double>>();
//public ArrayList<Double> avrageVal = new ArrayList<Double>();

public Integer generation = 0;

Double average = 0.0;

125 130 135 140

public static void main(String[] args) {
minClass obj = new minClass();
obj.random() ;
int £ = 1;
while (f != 0) {
if (obj.fun2() < 1)

f =0;
}
}
public void random() {
Random rand = new Random() ;

for (int a = 0; a < 20; a++) {
ArrayList<Double> Chr = new ArrayList<Double>();
for (int b = 0; b < 20; b++) {
Chr.add (rand.nextDouble () * 2 - 1);

ChrMas?2.add (Chr) ;

}

public int fun2() {
//get fitness
ArrayList<Double> fitnessMas = new ArrayList<Double>();
Map<Integer, Double> map = new HashMap<>();
for (int a = 0; a < ChrMas2.size(); a++) {
Double fitnessChr = 20.0;
for (int b = 0; b < 20; b++) {
fitnessChr += Math.pow(ChrMas2.get (a).get(b), 2)-
Math.cos (2*Math.PI*ChrMas2.get (a) .get (b)) ;
}
fitnessMas.add (fitnessChr) ;
map.put (a, fitnessChr);
}
//Sorting
for (int 1 = 0; i < 20; i++)
for (int j = 0; j < 20; J++)
if (1 !'= J && ((1 < j && fitnessMas.get (i) > fitnessMas.get(j)) || (1 > J &&
fitnessMas.get (i) < fitnessMas.get(j)))) {
for (int k = 0; k < 20; k++) {
Double gen = ChrMas2.get (i) .get (k);
ChrMas2.get (i) .set (k, ChrMas2.get(j).get(k));
ChrMas2.get (j) .set (k, gen);
}
double fit = fitnessMas.get (i)
fitnessMas.set (i, fitnessMas.get(j));
fitnessMas.set (j, fit):;
}
//crossover
ArrayList<ArrayList<Double>> newGen = new ArrayList<ArrayList<Double>>();
Random rand = new Random{() ;
for (int 1 = 0; 1 < 10; i++) {
Double mama = fitnessMas.get (rand.nextInt (10)), papa = fitnessMas.get (rand.nextInt (10));
int mama key = getValue (map, mama), papa_ key = getValue (map, papa);

int cros _gen = rand.nextInt(18) + 1;

ArrayList<Double> firstChild = new ArrayList<Double>();

for (int j = 0; j < cros_gen; Jj++)
firstChild.add(ChrMas2.get (mama_ key) .get (j));

for (int j = cros gen; j < 20; j++)

firstChild.add(ChrMas2.get (papa key).get (j));
newGen.add (firstChild) ;

}
//mutation
ChrMas2 = new ArrayList<ArrayList<Double>> (newGen) ;
for (int 1 = 0; i < ChrMas2.size(); i++)
for (int j = 0; j < ChrMas2.get(0).size(); j++)

if (rand.nextInt (20) == 13) {
if (ChrMas2.get(i).get(j) != 1) {
ArrayList<Double> t = new ArrayList<Double> (ChrMas2.get (i));

t.set(j, 1.1);
ChrMas2.set (i, t);
} else {
ArrayList<Double> t = new ArrayList<Double> (ChrMas2.get(i));
t.set(j, 0.0);
ChrMas2.set (i, t);

average = 0.0;
for (int 1 = 0; 1 < 20; 1i++)
average += fitnessMas.get (1i);

average /= 20;

System.out.println ("Average value: " + average);
generation++;
write(fitnessMas.get (0) .toString (), average.toString(), generation.toString());

return end(average) ;

}

public static Integer getValue (Map<Integer, Double> map, Double wvalue) {
Set<Map.Entry<Integer, Double>> entrySet = map.entrySet();
Double desiredFitness = value;//4YToO XOTMM HAMNTU
Integer key = 0;
for (Map.Entry<Integer, Double> pair : entrySet) ({
if (desiredFitness.equals(pair.getValue())) {
key = pair.getKey();// Hamwnu Hame 3HAYEHME M BO3BpAaNlAEM KJIOY
}
}
return key;

}

public void write(String maxfitness, String average, String generation) {

try {

PrintStream printStreaml = new PrintStream(new FileOutputStream("D:\\maxfitness.txt", true),
true);

PrintStream printStream?2 = new PrintStream(new FileOutputStream("D:\\average.txt", true),
true);

PrintStream printStream3 = new PrintStream(new FileOutputStream("D:\\generation.txt", true),
true);

try {

//3anucHBaeM TEKCT
printStreaml.println (maxfitness);
printStream2.println (average) ;
printStream3.println (generation) ;
} finally {
//Tlocyie yero Mel OOJIKHEL 3aKpPBITh (Gars, MHauve dani He 3anuieTcs
printStreaml.close () ;
printStream2.close () ;
printStream3.close () ;
}
} catch(IOException e) {
throw new RuntimeException (e);
}
}

public int end(Double average) {
int sch = 0;
if (average == 0.0)
return 1;
else return O0;

Task 2. 2-D version of Schwefel’s function

1. Minimize in the following way!
y=nA+>"i-1(x2 i — A cos(2rxi))

(1) Represent value of x by a 10-bit binary chromosome.

(2) Create a population of 20 chromosomes at random, with fitness being y.
(3) Evolve this population till fitness dosn’t change.

2. Show

(1) the graph of fitness vs generation.

(2) all 20 points (x, y) in the 1st, an intermediate, and final generation.

Results:

—@— Average —@—Best

0 ® ® 10&04:\1

0 2 4 6 8 10 12 14 16 18
The best values are within [0; 0.002]. Therefore, the schedule merges with the horizontal x-axis.

1-st generation:

1+ x"2 - cos(2*3.14*x) ® Chromosomes

-1,3

3-rd generation:

20

22

1,3

1+ x"2 -cos(2*3.14*x)

® Chromosomes

-1,3

5-th generation:

1+x"2-cos(2*3.14*x)

—@— Chromosomes

1,3

-1,3

21-st generation:

1,3

1+x"2-cos(2*3.14%x) ® Chromosomes

-1,3 1,3

22-nd generation:

1+x"2-cos(2*3.14*x) ® Chromosomes

-1,3 1,3

Source code:

package com.abrams;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;

public class MainTask?2
{

static Random random = new Random(/*System.currentTimeMillis()*/2210812);

static class Chromosome
{
double[] genes;
public Chromosome ()
{
genes = new double[ll];
for(int 1 = 0; 1 < 11; 1i++)

genes[i] = random.nextInt (2);
}
double getFitness()
{
double x = 0;
for(int i = 1; i < 11; i++)
if (genes[i] == 1)
X += Math.pow(2, 1 - 1);

x /= 1023;
if (genes[0] == 0)
X *= -1;

return 1 + (x * x - Math.cos (Math.PI * 2 * x));
}

static class Generation

{
Chromosome [] chromosomes;
public Generation ()

{

chromosomes = new Chromosome[20];
for(int 1 = 0; i < 20; i++)
chromosomes[i] = new Chromosome () ;

}
double getAverageFitness()
{
double counter = 0;
for (Chromosome i : chromosomes)
counter += i.getFitness();
return counter / 20;
}
void sort ()
{
Arrays.sort (chromosomes, (ol, o02) ->
{
double olfit = ol.getFitness();
double 02fit = o2.getFitness();
if(olfit < o2fit)
return -1;
else if(olfit > o2fit)
return 1;
else
return O;
1)
}
Chromosome [] get2RandomChromosomes ()

{

Chromosome[] random?2 = new Chromosome[2];
random2[0] = chromosomes[random.nextInt (10)];
random2 [1] = chromosomes[random.nextInt (10)];

return random?2;

}

Chromosome getBestChromosome ()
{
return chromosomes[0];
}
}

static Chromosome crossover (Chromosome first, Chromosome second)

{
int crossoverPoint = random.nextInt (first.genes.length);
Chromosome child = new Chromosome () ;
System.arraycopy (first.genes, 0, child.genes, 0, crossoverPoint);
System.arraycopy (second.genes, crossoverPoint, child.genes, crossoverPoint,
second.genes.length - crossoverPoint);

if (random.nextInt (20) == 13)
{

int pos = random.nextInt (child.genes.length);

if (child.genes[pos] == 0)
child.genes[pos] = 1;
else

child.genes[pos] 0;

}
return child;

}

static ArraylList<Double> fitnessHistory;
static boolean isLastGenerationUnchanged()
{
double tmp = fitnessHistory.get (fitnessHistory.size() - 1);

if (tmp == 0.0)
return true;
if (fitnessHistory.size () <= 100)
return false;
for(int 1 = 0; 1 < 100; 1i++)
if (fitnessHistory.get (fitnessHistory.size() - i - 1) != tmp)
return false;
return true;

public static void main(String[] args)

{

ArrayList<Generation> generations = new ArrayList<>();
generations.add(new Generation());
generations.get (0) .sort () ;
fitnessHistory = new ArrayList<>();
fitnessHistory.add (generations.get (0) .getAverageFitness());
System.out.println(String.format ("$d\t\t%.4£\t\t%.4£f", 0, generations.get (0).getAverageFitness(),
generations.get (0) .getBestChromosome () .getFitness()));
for (Chromosome j : generations.get (0).chromosomes)
{
double x = 0;
for(int 1 = 1; i < 11; i++)
if(j.genes[i] == 1)
x += Math.pow(2, 1 - 1);
x /= 1023;
if(j.genes[0] == 0)
x *= -1;
System.out.println(String.format ("%.4f\t%.4f", x, j.getFitness()));
}

for(int i = 1; ; i++)
{

Generation newGeneration = new Generation();

for(int j = 0; j < newGeneration.chromosomes.length; j++)

{
Chromosome [] random2 = generations.get (generations.size() - 1) .get2RandomChromosomes () ;
newGeneration.chromosomes|[j] = crossover (random2[0], random2[1]);

}

newGeneration.sort () ;

generations.add (newGeneration) ;

generations.remove (0) ;

fitnessHistory.add (newGeneration.getAverageFitness());

System.out.println(String.format ("$d\t\t%.4£f\t\t%.4f", i, newGeneration.getAverageFitness(),

newGeneration.getBestChromosome () .getFitness()));
if(i == [1 == [l 1 ==6 || 1 == 20)
for (Chromosome j : newGeneration.chromosomes)

{
double x = 0;
for(int z = 1; z < 11; z++)
if(j.genes[z] == 1)
x += Math.pow(2, z - 1);

x /= 1023;
if(j.genes[0] == 0)
x *= -1;

System.out.println(String.format ("%.4f\t%.4f", x, j.getFitness()));
}
if (isLastGenerationUnchanged())
break;

